
For transient simulations we have implemented the algorithm proposed by
Alauzet et al. (2007).

1 IMPLEMENTATION

This algorithm is implemented in a bash script that can be found under
[ELMER TRUNK]/elmerice/Solvers/MeshAdaptation 2D/Script Transient.sh.

The algorithm description is given below:

Algorithm 1 Script Transient.sh

1: N := Integer . Number of Timestep Intervals for Physical Simulation
2: dt := Real . Timestep Sizes for Physical Simulation
3: OuputIntervals := Integer . Output Intervals for Physical Simulation
4: Execute RUN INIT.sif . Initialisation
5: for i = 0, imax do . t=[0, (imax + 1) ∗N ∗ dt]
6: for j = 0, jmax do . t=[i ∗N ∗ dt, (i+ 1) ∗N ∗ dt]
7: Execute RUN I J.sif . Physical simulation
8: Convergence ?
9: if ((< CONV ERGED >) .OR. (j = jmax)) then

10: kmax = 1
11: < ReadTransientResult >:= False
12: i+ = i+ 1
13: j+ = 0
14: else
15: kmax =< N > / < OuputIntervals > +1
16: < ReadTransientResult >:= True
17: i+ = i
18: j+ = j + 1
19: end if
20: Execute MESH OPTIM I J.sif . Mesh adaptation
21: end for
22: end for

The general steps are as follow:

• A physical simulation for t = [0, tf ] is divided in imax + 1 subsets;

• The configuration file RUN IINIT.sif initialises the transient ice flow
problem; e.g. initialises the ice-sheet geometry from observations.

• The configuration file RUN I J.sif solves a transient ice flow problem
(e.g. solves a balance equation to compute the velocity field and a mass
conservation equation for the geometry evolution) for the subset t =
[i ∗N ∗ dt, (i+ 1) ∗N ∗ dt], saving the results every < N > time-steps.

• The configuration file MESH OPTIM I J.sif performs the mesh adap-
tation. The metric is constructed using the informations saved by the

1



physical simulation, i.e. the mesh is adapted using the simulation history,
allowing to refine the mesh where needed during the transient simulation.
When moving to the next subset, the mesh is adapted using only the
informations from the mast time-step.

• If jmax is set to 0, this is equivalent to adapt the mesh every N time-
steps using only the information from this time-step. Each subset t =
[i∗N ∗dt, (i+1)∗N ∗dt] is solved only once, but the mesh has been adapted
using only the informations at t = i ∗ N ∗ dt. If the simulation involves
large changes, the mesh must be adapted often to keep high resolution
where needed; this can result in a loss of accuracy due to the interpolation
between meshes.

• If jmax > 0, the subset t = [i ∗N ∗ dt, (i+ 1) ∗N ∗ dt] is solved iteratively
several times. At each iteration the mesh has been adapted using the
informations saved every < N > intervals for the subsets t = [i ∗ N ∗
dt, (i+ 1) ∗N ∗ dt]. Requires more computing time as the subset is solved
several times and meshes are usually larger as they are refined where
needed to keep high accuracy during the transient simulation. However,
sensitivity of the results to the mesh is part of the outputs.

The algorithms for the configuration files are given below:

• RUN INIT.sif : Initialisation file. Typically, Initialise the ice sheet ge-
ometry and create the first restart file M I0 I0.result.

Algorithm 2 RUN INIT.sif

1: Mesh := MESH I0 J0
2: t := 0
3: h0 := Get Initial Ice Sheet Geometry
4: Save M I0 I0.result

• RUN I J.sif : Physical simulation for the subset t = [i ∗N ∗ dt, (i+ 1) ∗
N ∗ dt]; Typically compute the velocity and geometry evolution.

• MESH OPTIM I J.sif : Mesh adaptation. Compute the metrics and
metric intersection.

2



Algorithm 3 RUN I J.sif

1: Mesh := MESH I<i> J<j>
2: Restart last step in M I<i> I<j>.result
3: t :=< i > × < N > × < dt >
4: h := h0
5: for k = 1,<N> do
6: t := t+ < dt >
7: Compute h(t), etc...
8: if (k/ < OuputIntervals > −1 = 0) then
9: Save in R I<i> J<j>.result

10: end if
11: end for
12: Save in R I<i> J<j>.result

Algorithm 4 MESH OPTIM I J.sif

1: Mesh := MESH I<i> J<j>
2: Restart last step in R I<i> I<j>.result
3: h0 := h . h0 = h((i+ 1) ∗N ∗ dt)
4: Mt := M0

5: for k = 1, kmax do
6: if (< ReadTransientResult >) then
7: Read step k in R I<i> I<j>.result . overwriteh0 => h(i ∗N ∗ dt)
8: end if
9: Compute Metric M = f(h, ...)

10: Compute Metric Mt = Mt ∩M
11: end for
12: Create Mesh := MESH I< i+ > J< j+ >
13: Save in R I< i+ > J< j+ >.result

3



2 EXAMPLE

An example can be found under [ELMER TRUNK]/elmerice/elmerice/Tests/MMG2D Transient.
This test case is a classical problem of solid bodies in rotation used to test
the performance of numerical methods to solve convection dominated transport
equations.

Here we use the ThicknessSolver to solve

∂H

∂t
+∇.(Hu) = 0 (1)

where the divergence free velocity field is given by

u = 2π(y − 0.5, 0.5− x) (2)

The initial bodies (a cone and a gaussian bump) experience a clockwise
rotation. They come back at their initial position at t = 1.
In this example,

• RUN INIT.sif initialise the two bodies.

• RUN I J.sif solve Eq. (1) where the velocity field Eq. (2) is prescribed.

• MESH OPTIM I J.sif adapt the mesh using solutions for H.

Some results are shown in Fig.1. Parameters used for this example are:

1. SIMULATIONS PARAMETERS

• dt=0.001 # time step size

• time intervals=500 # number of time steps

• output interval=10 # output intervals

2. ALGORITHM PARAMETERS

• imax = 0

• jmax = 10

With j = 0 the bodies leave the initially refined areas and the shape is not pre-
served; After 3 iterations of the mesh adaptation loop (j = 3), the mesh has been
adapted taking into account the displacement of the bodies computed during
the previous iteration (j = 2). The shape of the bodies is better preserved.

N.B: The thickness solver uses by default a SUPG stabilisation scheme for
the convection term; there is still some numerical diffusion and the initial shape
is not totally preserved; This is a known issue with transport equations.

4



Figure 1: The Bump and the Cone at t = 0.5 (i.e. rotation of π) for (left) j = 0,
(right) j = 3.

5



References

Alauzet, F., Frey, P.J., George, P.L., Mohammadi, B., 2007.
3D transient fixed point mesh adaptation for time-dependent problems: Appli-
cation to CFD simulations.
Journal of Computational Physics, 222, https://doi.org/10.1016/j.jcp.2006.08.012

6


