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DIAGNOSTIC RUN
Starting from a given point-distribution (DEM) in 2D we show how to
• Build the geometry and mesh it (using Gmsh)
• Set up runs on fixed geometry
• Basic post-processing in ParaView
• Introduce sliding
• Introduce heat transfer (thermo-mechanical coupling)



The diagnostic problem

• We start from a 
distribution of 
surface and 
bedrock points 
that have been 
created driving a 
prognostic run 
into steady state

• The distributions are given in the files: 
steady_ELA400_bedrock.dat , steady_ELA400_surface.dat



The diagnostic problem



The diagnostic problem

• We use a 11 deg inclined rectangular mesh 
(produced with Gmsh) of unit-height



The diagnostic problem

• Open the Gmsh file: 

$ gmsh testglacier.geo

• Go to Mesh and press the 2D button

• Save the mesh

• Use ElmerGrid to convert the mesh:
> ElmerGrid 14 2 testglacier.msh\

–autoclean –order 0.1 1.0 0.01

Orders the numbering in x 
y z –directions (highest 
number fastest)

Needed to 
clean up 
geometry



The diagnostic problem

• Open the Solver Input File (SIF)

$ emacs Stokes_diagnostic.sif

• Steady state simulation = diagnostic



The diagnostic problem 



The diagnostic problem

• Boundary conditions:
– using array function for 

reading surfaces
– Real [cubic] expects 

two columned row:
x1 z1
x2 z2
…

– include just inserts 
external file (length)

– Right values interpolated 
by matching interval of 
left values for input 
variable



The diagnostic problem 

• Now, run the case:

$ ElmerSolver Stokes_diagnostic.sif

– You will see the convergence history displayed:

FlowSolve: -------------------------------------

FlowSolve:  NAVIER-STOKES ITERATION          23

FlowSolve: -------------------------------------

FlowSolve: 

FlowSolve: Starting Assembly...

FlowSolve: Assembly done

FlowSolve: Dirichlet conditions done

ComputeChange: NS (ITER=23) (NRM,RELC): (  1.6112696     

0.90361030E-03 ) :: navier-stokes

FlowSolve: iter:   23 Assembly: (s)    0.26    6.04

FlowSolve: iter:   23 Solve:    (s)    0.11    2.62

FlowSolve:  Result Norm     :    1.6112695610649261

FlowSolve:  Relative Change :    9.0361030224648782E-004



The diagnostic problem 

• Post-processing using ParaView: $ paraview



The diagnostic problem 

• File → Open  stokes_ela400_diagnostic0001.vtu



The diagnostic problem 

• Apply



The diagnostic problem 

• Change to velocity

Press to 
activate
colour 
bar 



The diagnostic problem 

• Scale



The diagnostic problem 

• Change colours

1.

2.

3.



Sliding

• Different sliding laws in Elmer

• Simplest: Linear Weertman
– This is formulated for the traction     and velocity      in 

tangential plane

• In order to define properties in normal-tangential 
coordinates: Normal-Tangential Velocity = True

• is the Slip Coefficient {2,3} (for the tangential 
directions 2 and 3)

• Setting normal velocity to zero (no-penetration) 
Velocity 1 = 0.0



Sliding

• Now we introduce sliding

– We deploy a sliding zone between z=300 and 
400m

Use normal-tangential 
coordinate system Definition of slip 

Coefficient



Sliding

• Restart from previous run (improved initial 
guess)

Take last entry



The diagnostic problem 

• Now, run the case:

$ ElmerSolver Stokes_diagnostic_slide.sif

– Converged much earlier:

FlowSolve: -------------------------------------

FlowSolve:  NAVIER-STOKES ITERATION          12

FlowSolve: -------------------------------------

FlowSolve: 

FlowSolve: Starting Assembly...

FlowSolve: Assembly done

FlowSolve: Dirichlet conditions done

ComputeChange: NS (ITER=12) (NRM,RELC): (  3.4915753     

0.34732117E-05 ) :: navier-stokes

FlowSolve: iter:   12 Assembly: (s)    0.32    3.53

FlowSolve: iter:   12 Solve:    (s)    0.12    1.38

FlowSolve:  Result Norm     :    3.4915753430899730

FlowSolve:  Relative Change :    3.4732116934487441E-006

ComputeChange: SS (ITER=1) (NRM,RELC): (  3.4915753      

2.0000000     ) :: navier-stokes



Sliding

• Load parallel to previous file

• File → Open  
stokes_ela400_diagnostic_slide0001.vtu



Sliding

1.

2.



Sliding

Scale 
also this 
one



Heat transfer

• Adding heat transfer:

– Add ElmerIceSolvers TemperateIceSolver

with variable name Temp (see next slide)

– Surface temperature distribution: linear from 
273.15K at z=0m to 263.15K at z=1000m

– Geothermal heat flux of 200 mW m-2 at bedrock

Temp = Variable Coordinate 2

Real

0.0   273.15

1000.0   263.15

End 

Temp Flux BC = Logical True

Temp Heat Flux = Real $ 0.200 * (31556926.0)*1.0E-06



Heat transfer

Solver 4

Equation = String "Homologous Temperature Equation"

Procedure =  File "ElmerIceSolvers" "TemperateIceSolver"

Variable = String "Temp"

Variable DOFs = 1

Stabilize = True

Optimize Bandwidth = Logical True

Linear System Solver = "Iterative"

Linear System Direct Method = UMFPACK

Linear System Convergence Tolerance = 1.0E-06

Linear System Abort Not Converged = False

Linear System Preconditioning = "ILU1"

Linear System Residual Output = 0

Nonlinear System Convergence Tolerance = 1.0E-05

Nonlinear System Max Iterations = 100

Nonlinear System Relaxation Factor = Real 9.999E-01

Steady State Convergence Tolerance = 1.0E-04

End



Heat transfer

• Material parameters in Material section

• Using defined MATC-functions for
– Capacity:

– Conductivity: 

Material 1

…

! Heat transfer stuff

Temp Heat Capacity = Variable Temp

Real MATC "capacity(tx)*(31556926.0)^(2.0)"

Temp Heat Conductivity = Variable Temp

Real MATC "conductivity(tx)*31556926.0*1.0E-06"

End



Heat transfer

• Material parameters in Material section

• Using defined MATC-functions for
– Capacity:

– Conductivity: 

!! conductivity

$ function conductivity(T)  { _conductivity=9.828*exp(-5.7E-03*T)}

!! capacity

$ function capacity(T) { _capacity=146.3+(7.253*T)}



Heat transfer

• Now, run the case:

$ ElmerSolver Stokes_diagnostic_temp.sif

• It goes pretty quick, as we only have one-way 
coupling and hence don’t even execute the 
Stokes solver

Solver 3

Exec Solver = "Never" ! we have a solution from previous case

Equation = "Navier-Stokes"



Heat transfer



Heat transfer

• Due to high 
geothermal 
heatflux we 
have areas 
above 
pressure 
melting point

• We have to 
account for 
this



Heat transfer

• Constrained heat transfer:

– Including following lines in Solver section 
ElmerIceSolvers TemperateIce

! the contact algorithm (aka Dirichlet algorithm)

!-----------------------------------------------------

Apply Dirichlet = Logical True

! those two variables are needed in order to store

! the relative or homologous temperature as well

! as the residual

!-------------------------------------------------

Exported Variable 1 = String "Temp Homologous"

Exported Variable 1 DOFs = 1

Exported Variable 2 = String "Temp Residual"

Exported Variable 2 DOFs = 1



Heat transfer

• Constrained heat transfer:

– Also introduce the upper limit for the temperature 
(a.k.a. pressure melting point) in the Material 
section

Temp Upper Limit = Variable Depth

Real MATC "273.15 - 9.8E-08 * tx * 910.0 * 9.81"



Heat transfer

• Now, run the case:

$ ElmerSolver \

Stokes_diagnostic_temp_constrained.sif

• Already from the norm (~ averaged nodal 
values) it comes clear that values are in 
general now lower

TemperateIceSolver (temp): iter:    5 Assembly: (s)    1.36    6.77

TemperateIceSolver (temp): iter:    5 Solve:    (s)    0.00    0.01

TemperateIceSolver (temp):  Result Norm   :    271.78121462656480

TemperateIceSolver (temp):  Relative Change :    

5.0215061382786350E-006

ComputeChange: SS (ITER=1) (NRM,RELC): (  271.78121      2.0000000     

) :: homologous temperature equation



Heat transfer

ConstrainedUnconstrained



Heat transfer

• Thermo-mechanically coupled simulation:

– We have to iterate between Stokes and HTEq.

– Coupling to viscosity in Material section

Steady State Max Iterations = 20

! the variable taken to evaluate the Arrhenius law

! in general this should be the temperature relative

! to pressure melting point. The suggestion below plugs

! in the correct value obtained with TemperateIceSolver

Temperature Field Variable = String "Temp Homologous"



Heat transfer

Thermo-mechanically coupledUncoupled (constant T)



PROGNOSTIC RUN
Starting from a flat mesh (resembling ice-free conditions) we will

• Set up a transient run

• Introduce the kinematic free surface condition (run on surface)

• Couple it to the climatic mass balance

• Introduce vertically aligned mesh adaption

• Show, how to do transient post-processing in ParaView



The prognostic problem

• Glacier with ~11 deg constant inclination

• Standard accumulation/ablation function

• Or in terms of ELA (equilibrium line altitude):

• We know lapserate,  , and          and have to 
define



The prognostic problem

• From x=[0 :2500], z=[0:500]

• Setting mesh with 10 vertical levels with 5m 
flow depth



The prognostic problem

• Flow problem  (Navier-Stokes) in ice

• Free-surface problem on free surface



The prognostic problem

• Changing to transient case (Stokes_prognostic.sif)

• MATC function for accumulation/ablation

• As BodyForce for FreeSurfaceSolver

Simulation

…

Simulation Type = "Transient“

…

End

$ function accum(X) {\

lapserate = (11.0/2750.0);\

ela = 400.0;\

asl = -ela*lapserate;\

_accum = lapserate*X(1) + asl;\

}



The prognostic problem
Solver 3   

Exec Solver = always

Equation = "Free Surface“

Variable = String "Zs“

Variable DOFs =  1

Exported Variable 1 = -dofs 1 "Zs Residual“

Exported Variable 2 = -dofs 1 "RefZs“

Procedure = "FreeSurfaceSolver" "FreeSurfaceSolver“

Linear System Solver = Iterative

Linear System Max Iterations = 1500

Linear System Iterative Method = BiCGStab

Linear System Preconditioning = ILU0

Linear System Convergence Tolerance = Real 1.0e-7

Linear System Abort Not Converged = False

Linear System Residual Output = 1

Nonlinear System Max Iterations = 100

Nonlinear System Convergence Tolerance  = 1.0e-6

Nonlinear System Relaxation Factor = 0.60

Steady State Convergence Tolerance = 1.0e-03

Stabilization Method = Bubbles

Apply Dirichlet = Logical True

End



The prognostic problem
• Set initial z-values

• Accumulation in Body Force

• Maximum and minimum value

Initial Condition 2

…

Zs = Equals Coordinate 2

RefZs = Equals Coordinate 2

…

End

Body Force 2

Zs Accumulation Flux 1 = Real 0.0e0

Zs Accumulation Flux 2 = Variable Coordinate 1, Coordinate 2        

Real MATC "accum(tx)" 

End

Material 2

Min Zs = Variable RefZs

Real MATC "tx - 0.1“

Max Zs = Variable RefZs

Real MATC "tx + 600.0"

End



The prognostic problem

• Need a solver to move the mesh

– This one uses the structured extruded mesh

Solver 4   

Exec Solver = "after timestep“

Equation = "MapCoordinate“

Procedure = "StructuredMeshMapper" "StructuredMeshMapper"  

Active Coordinate = Integer 2

! the mesh-update is y-direction

! For time being this is currently externally allocated

Mesh Velocity Variable = String "Mesh Velocity 2“

! The 1st value is special as the mesh velocity

! could be unrelistically high

Mesh Velocity First Zero = Logical True

Dot Product Tolerance = Real 0.01

End



The prognostic problem

• Coupling of free surface

• Bodies on surfaces

– Free surface condition

is a dimension-1 PDE

– Need to run it on body

defined on surface

Boundary Condition 3

Name = "surface“

Top Surface = Equals "Zs“

Target Boundaries = 2

Body ID = 2

Depth = Real 0.0

End



The prognostic problem



Time dependent boundary conditions

• Adding time-dependent ELA to show retreat 
(Stokes_prognostic_change.sif)

$ function accum(X) {\

lapserate = (11.0/2750.0);\

ela = 400.0 + (0.5*X(2));\

asl = -ela*lapserate;\

if (X(0) > 2500)\

{_accum = 0.0;}\

else\

{ _accum = lapserate*X(1) + asl;}\

} 

Body Force 2

Name = "BodyForce1"

Zs Accumulation Flux 1 = Real 0.0e0

Zs Accumulation Flux 2 = Variable Coordinate 1, Coordinate 2,\

Time

Real MATC "accum(tx)" 

End



Time dependent boundary conditions

• Similar exercise, but with user defined function 
(Stokes_prognostic_changeUDF.sif)

• Also introducing a cut-off value of the accumulation above a 
certain elevation

• Compile the file  accumulation.f90

Body Force 2

Name = "BodyForce1"

Zs Accumulation Flux 1 = Real 0.0e0

!Zs Accumulation Flux 2 = Variable Coordinate 1, Coordinate 2,\

Time

!  Real MATC "accum(tx)“

Zs Accumulation Flux 2 = Variable Coordinate 2, Time

Real Procedure "accumulation" "getAccumulation"

End

$ elmerf90 accumulation.f90 –o accumulation.so



Time dependent boundary conditions



Time dependent boundary conditions



Time dependent boundary conditions


