Regional paleo ice-sheet simulations with Elmer/Ice

Clemens Schannwell¹

Drews, R.², Ehlers, T.A.², Eisen, O.^{3,4}, Mayer, C.⁵, Malinen, M.⁶, Smith, E.C.³, H. Eisermann³, and C. Henry^{1,2}

¹Max Planck Institute for Meteorology, Hamburg, Germany (contact: Clemens.Schannwell@mpimet.mpg.de)
²Department of Geosciences, University of Tübingen, Tübingen, Germany
³Glaciology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
⁴Department of Geosciences, University of Bremen, Bremen, Germany
⁵Bavarian Academy for Sciences and Humanities, Munich, Germany
⁶CSC-IT Center for Science Ltd., Espoo, Finland

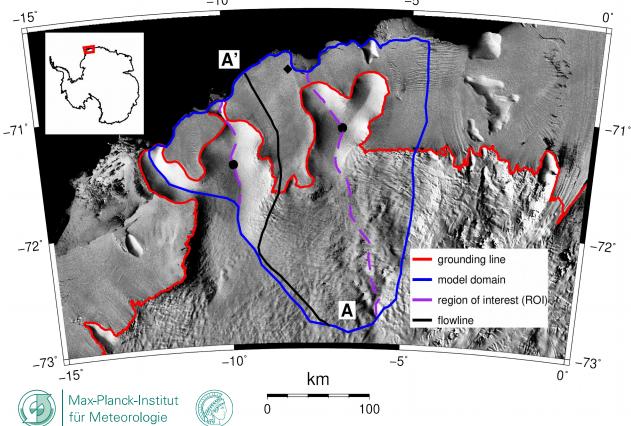
Talk outline

1) Glacial cycle simulations for the Ekström Ice Shelf embayment

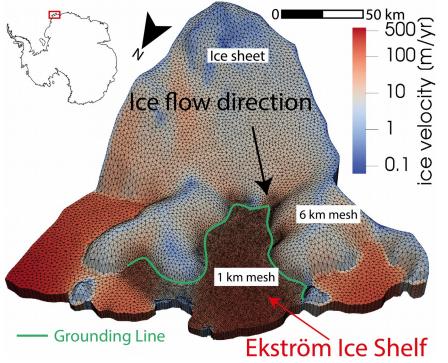
2) Synthetic ice rise simulations

3) Problems and questions

Research Goals


1) Extend the applicability of full-Stokes models to glacial cycle time scales

2) What is the effect of different ocean bed properties on ice-sheet geometry over a glacial cycles


Study site: Ekström Ice Shelf

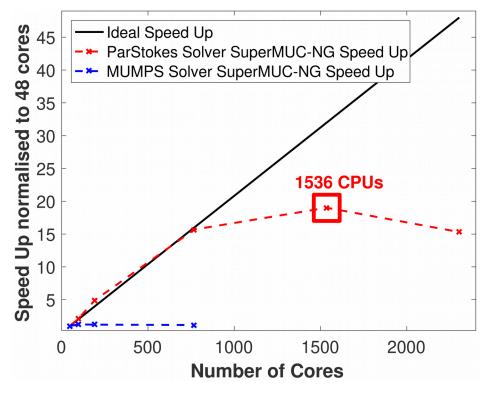
 Availability of excellent boundary datasets (e.g. bathymetry)

 diverse glaciological features (e.g. ice rises)

Model setup

Model setup details:

Model: Elmer/Ice Force balance: full-Stokes Thermomechanically coupled: yes Mesh resolution: 1-6 km Verical mesh layers: 10 Basal sliding: linear Weertman Basal melting: follows Beckmann and Goosse, 2003 Surface mass balance: follows Ritz et al.,2001 No glacial isostatic rebound

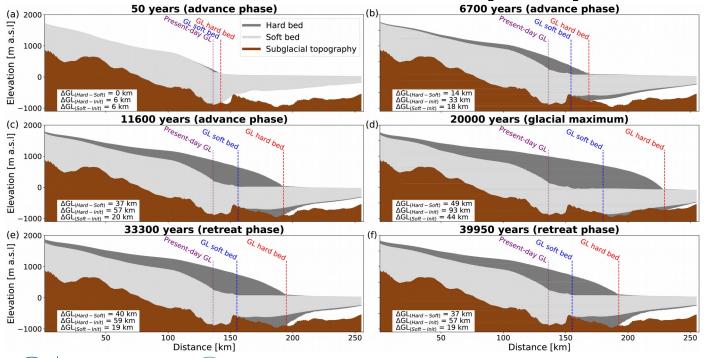


Experimental Design

- 1) We simulate a 40,000 year glacial cycle starting from present-day conditions.
- 2) We study the effect of different ocean bed properties by prescribing soft or hard bed conditions for present-day ocean cavities.
- 3) We perform these two end member simulations with classic solver setup (MUMPS) and block-preconditioned solver setup (ParStokes)

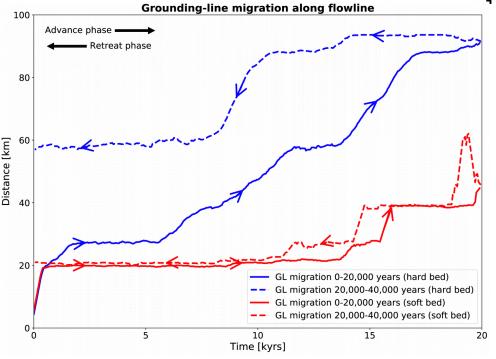
Results: Scaling of ParStokes

- Scales linearly up to ~700 CPUs (~200,000 nodes)
- Decrease in computation time up to ~1,500 CPUs
- Scaling depends on problem size

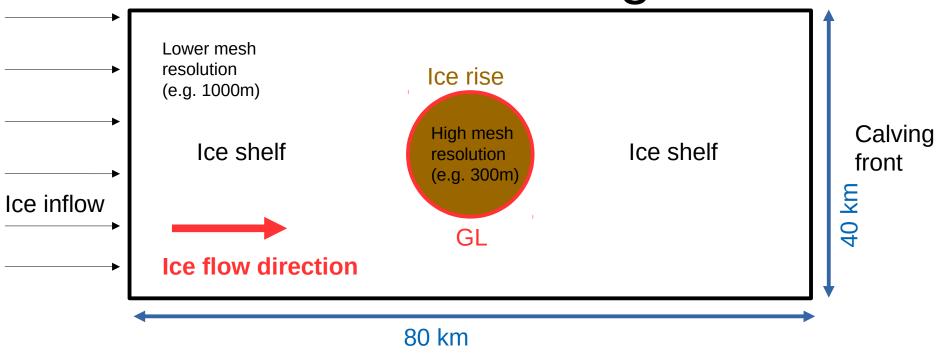


Results: Speed up of simulations

- Computation time in comparison to classic direct solver (MUMPS) setup reduces by factor 3-6
- comparable results between solver setups (<5 % difference in grounded area).


Results: Response to different ocean bed properties

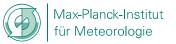
Max-Planck-Institut für Meteorologie Up to 50 % difference in icesheet volume under almost identical forcing


 thick and slow vs. thin and fast ice sheet

Results: Response to different ocean bed properties

Max-Planck-Institut für Meteorologie Ocean bed properties provide an additional parameter that induces hysteresis

Ongoing work: Synthetic 3D ice rise modelling



Ongoing work: Research Goals

1) What controls the stability of ice rises (e.g. predominately flat bed?)

2) What conditions are required to simulate a curved divide as observed on Derwael Ice Rise

3) Develop flexible modelling framework for real world 3D ice rise modelling for others to use

Ongoing work: Steady state ice rise video

Problems and questions

1) Convergence of vectorized NS solver (anyone tried this for sheet-shelf?)

 ParStokes convergence (even though outer (GCR) iteration converges quickly inner iteration does not)

3) Upper surface spikes come and go (see video)

Thank you!

