Large parallel problems

Background

- **Motivation**: improving the ability of Elmer solver to handle large discrete partial differential equation models
- The bottleneck is typically associated with the performance of iterative solvers for linear systems $\ Kx = b$
- A **key challenge**: identify an efficient preconditioner P which makes solving

 $\mathbf{K}\mathsf{P}^{-1}\mathbf{z} = \mathbf{b}$, with $\mathbf{z} = \mathbf{K}\mathbf{x}$,

quick and which is also amenable for a parallel implementation

- A special **feature** of many challenging problems: strong (physical) coupling of constituent fields
- Basic approaches to design preconditioners: Fully algebraic or physicsbased/block preconditioning

Background cntd.

- Traditionally in Elmer: the algebraic approach, like ILU
- Coupled multi-physic problems via segregation: $F_1(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) = \mathbf{0}$

. . .

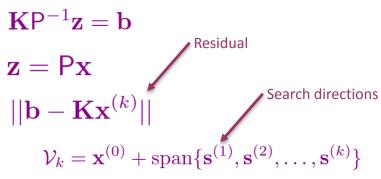
. . .

 $F_N(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_N)=\mathbf{0}$

Solved via Gauss-Seidel type of iteration:

$$F_1(\mathbf{x}_1^{(k+1)}, \mathbf{x}_2^{(k)}, \mathbf{x}_3^{(k)}, \dots, \mathbf{x}_N^{(k)}) = \mathbf{0}$$

$$F_2(\mathbf{x}_1^{(k+1)}, \mathbf{x}_2^{(k+1)}, \mathbf{x}_3^{(k)}, \dots, \mathbf{x}_N^{(k)}) = \mathbf{0}$$


Background cntd.

- If you succeed with an algebraic preconditioner: smile, whistle and be happy
 - $\circ\,$ no other approach will usually outperform your current one
 - BUT: In difficult situations (= large parallel runs) you usually fail with purely algebraic preconditioning
- In such (difficult) cases: Physics-based/block preconditioning
 - Alternatively: monolithic discretization (=all variables in one sweep); direct solvers
 - Examples: Ice flow: (equation of motion + free surface + incompressibility); Acoustic wave propagation: (equation of motion + energy conservation + continuity); Coupled systems: utilize the block structure of the monolithic system to derive a preconditioner

Design of a new preconditioner

- Solution of:
- Traditionally: produce iterates of $\mathbf{z} = \mathbf{z}$
- New approach: minimize

over

 $P \approx K$

 Preconditioner = operator, which from previous iterate produces new search directions by solution of:
 Residual correction system

 $\mathsf{P}\mathbf{s}^{(k+1)} = \mathbf{h} - \mathbf{K}\mathbf{v}^{(k)}$

Algorithm (GCR)

- Implemented in the *ParStokes* solver
- Needs additional pseudo-solvers to provide the matrix space for velocity as well as pressure block
- Use only for large scale problems, where algebraic preconditioner + Krylov-subspace solvers don't work and direct solver (MUMPS) exceed sensible memory resources

k = 0 $\mathbf{r}^{(k)} = \mathbf{f} - \mathbf{K} \mathbf{u}^{(k)}$ while $(\|\mathbf{r}^{(k)}\| < TOL\|\mathbf{f}\|$ and k < m) Generate the search direction $s^{(k+1)}$ $\mathbf{v}^{(k+1)} = \mathbf{K}\mathbf{s}^{(k+1)}$ do j = 1, k $\mathbf{v}^{(k+1)} = \mathbf{v}^{(k+1)} - \langle \mathbf{v}^{(j)}, \mathbf{v}^{(k+1)} \rangle \mathbf{v}^{(j)}$ $\mathbf{s}^{(k+1)} = \mathbf{s}^{(k+1)} - \langle \mathbf{v}^{(j)}, \mathbf{v}^{(k+1)} \rangle \mathbf{s}^{(j)}$ end do $\mathbf{v}^{(k+1)} = \mathbf{v}^{(k+1)} / \|\mathbf{v}^{(k+1)}\|$ $\mathbf{s}^{(k+1)} = \mathbf{s}^{(k+1)} / \|\mathbf{v}^{(k+1)}\|$ $\mathbf{u}^{(k+1)} = \mathbf{u}^{(k)} + \langle \mathbf{v}^{(k+1)}, \mathbf{r}^{(k)} \rangle \mathbf{s}^{(k+1)}$ $\mathbf{r}^{(k+1)} = \mathbf{r}^{(k)} - \langle \mathbf{v}^{(k+1)}, \mathbf{r}^{(k)} \rangle \mathbf{v}^{(k+1)}$ k = k + 1

Requirements

Robustness:

- $_{\odot}$ Iteration counts do not depend on the problem size
- $\circ\,$ Robust with respect to variations of essential model parameters
- $_{\odot}$ If robust, parallel scalability (weak) depends heavily on the scalability of the subsidiary computations

• Efficiency:

- $\circ\,$ The subsidiary computations corresponding to the application of the preconditioner done efficiently by exploiting optimal complexity solvers.
- \circ Need preconditioners the action of which operations may be computed by solving elementary models
- We focus here on exploring to what extent the requirements of the robustness and efficiency are met in the case of the examples considered.

Full Stokes

- Solver for: $-\operatorname{div}[2\eta(\mathbf{D})\mathbf{D}(\mathbf{v})] + \nabla p = \rho \mathbf{g},$ $-\operatorname{div} \mathbf{v} = 0$
- Strain-rate tensor

$$\mathbf{D} = \mathbf{D}(\mathbf{v}) = 1/2(\nabla \mathbf{v} + \nabla \mathbf{v}^T).$$

• Glen's flow law:

$$\eta = 1/2A^{-k}[I_2(\mathbf{D})]^{(k-1)/2}$$

= $1/2(\mathbf{D} \cdot \mathbf{D})$

Weak formulation + linearization

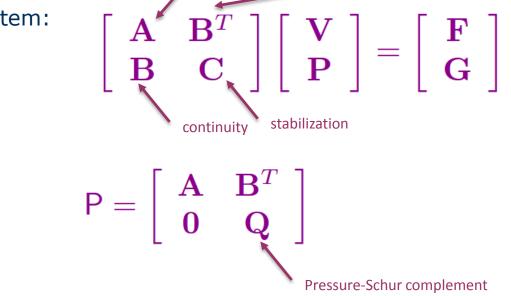
• Find for any $(\mathbf{z},q)\in\mathcal{V}$ a set of $(\mathbf{v},p)\in\mathcal{U}$ such that

$$\int_{\Omega} 2\mu(\mathbf{D}(\mathbf{v}_{k}))\mathbf{D}(\mathbf{v}_{k+1}) \cdot \mathbf{D}(\mathbf{z}) \, d\Omega - \int_{\Omega} p_{k+1} \nabla \cdot \mathbf{z} \, d\Omega = \int_{\Omega} \mathbf{b} \cdot \mathbf{z} \, d\Omega + \int_{\Gamma_{N}} \hat{\mathbf{s}} \cdot \mathbf{v},$$
$$- \int_{\Omega} \nabla \cdot \mathbf{v}_{k+1} q \, d\Omega = 0$$

Picard linearization

Stabilization

- Inf-Sup condition: stabilization by using different approximation spaces for velocity and pressure (saddle-point problem)
- Bubble stabilization: $V_h = S_h + B_h$


 $B_h = \{ v_h \mid v_{h|K} \in P_r(K) \text{ and } v_{h|\partial K} = 0 \text{ for any element } K \}$

- Recommended degrees of bubbles: brick 7, tetrahedron 5, wedge 6
- Bubbles are eliminated from matrix, but cost during assembly

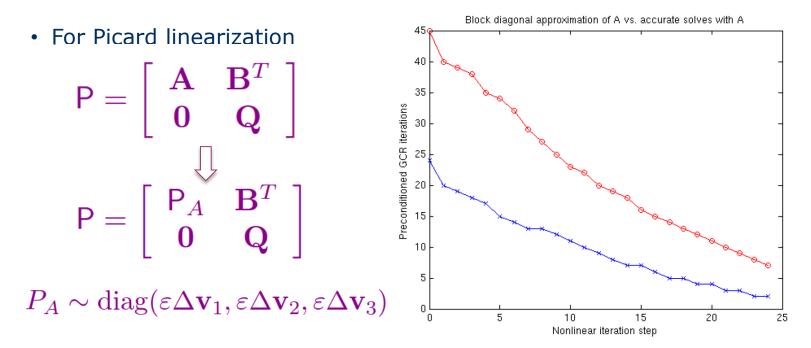
The preconditioner

• The full linearized system:

• The preconditioner:

• Replacement of pressure-Schur complement:

grad p

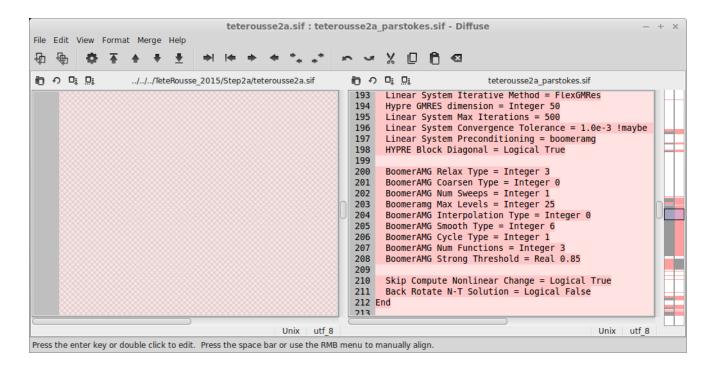

Performance

- A thin domain ⇒ high element aspect ratios ⇒ weakened finite element
 o stability may have an effect on the effectiveness of the preconditioner
- The robustness of the preconditioner with respect to natural variations of the ice viscosity
- The solver performance for different linearization strategies
- The use of the stress-divergence form couples the solution of the components of the velocity, i.e. A is not block diagonal ⇒ ways to utilize component-wise linear solves?

Different linearization strategies

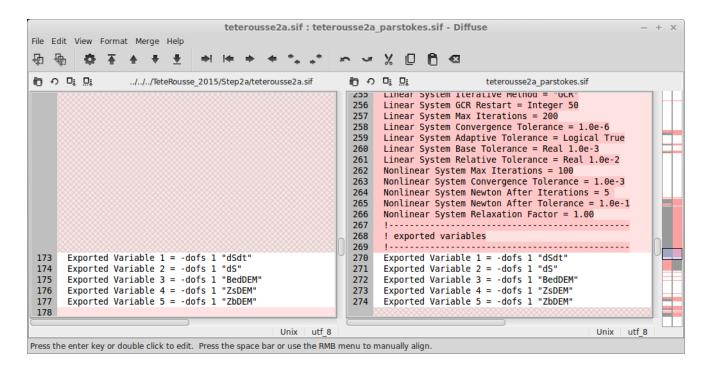
	Picard	Hybrid $\delta_{NL} = 10^{-1}/2$	Hybrid $\delta_{NL} = 10^{-2}$
Nonlin Step	lters	Linearization/Iters	Linearization/Iters
0	24	Picard/24	Picard/24
1	20	Picard/20	Picard/20
2	19	Picard/19	Picard/19
3	18	Picard/18	Picard/18
4	17	Picard/17	Picard/17
5	15	Newton/20	Picard/15
6	14	Newton/19	Picard/14
7	13	Newton/15	Picard/13
8	13	Newton/7	Picard/13
9	12	Convergence	Newton/16
10	11		Newton/14
11	10		Newton/7
12	9		Convergence
1324	4.5 (Aver.)		
25	Convergence		

Block diagonal approximation



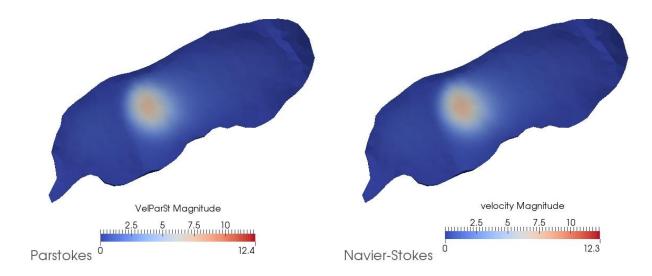
- Replacing standard Navier-Stokes solver in teterousse2a.sif with ParStokes
- Warning: you will be disappointed in terms of performance, because:
 - $_{\odot}$ This is a very small case
 - $\,\circ\,$ The aspect ratio of elements is very small
 - $_{\odot}$ The original case works with algebraic pre-conditioner, which always is faster
- So, this is just a demo on how to set up the simulation
- Next slides show the side-by-side changes

File Edit View Format Merge Help	usse2a_parstokes.sif - Diffuse - + ×
G	∽ ∽ ½ [] [] <2
Φ Δ	teterousse2a_parstokes.sif
<pre>60 Initial Condition = 1 61 End 62 63 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 64 Initial Condition 1 65 Pressure = Real 0.0 66 Velocity 1 = Real 0.0 67 Velocity 2 = Real 0.0 68 Velocity 3 = Real 0.0 68</pre>	60 Initial Condition = 1 61 End 62 63 Initial Condition 1 64 Initial Condition 1 65 FlowVar 4 = Real 0.0 66 FlowVar 1 = Real 0.0 67 FlowVar 2 = Real 0.0 68 FlowVar 3 = Real 0.0 69 V 1 = Real 0.0 70 V 2 = Real 0.0 71 V 3 = Real 0.0
69 End 70 71 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	72 P = Real 0.0 73 End 74 75 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Unix Utf_8 Press the enter key or double click to edit. Press the space bar or use the RMB m	Unix utf_8


teterousse2a.sif : tetero File Edit View Format Merge Help	ousse2a_parstokes.sif - Diffuse - + ×
ⓑⓑ ✿∓★≠≛ ≠⊭≠ *****	
Î າ □ Li//TeteRousse_2015/Step2a/teterousse2a.sif	teterousse2a_parstokes.sif
<pre>79 Material 1 80 Density = Real \$rhoi 81 82 Viscosity Model = String "glen" 83 Viscosity = 1.0 ! Dummy but avoid warning output</pre>	83 Material 1 84 Density = Real \$rhoi 85 86 Viscosity Model = String "glen" 87 Viscosity = 3200 ! The first nonlinear iterate is so 88 ! a realistic value expressed in th
<pre>84 Glen Exponent = Real 3.0 85 86 Limit Temperature = Real -10.0 87 Rate Factor 1 = Real \$A1 88 Rate Factor 2 = Real \$A2 99 Activation Energy 1 = Real \$Q1 90 Activation Energy 2 = Real \$Q2 91 Glen Enhancement Factor = Real 1.0 92 Critical Shear Rate = Real 1.0e-10 93 94 Constant Temperature = Real -1.0</pre>	<pre>89 ! Here we take nu = 1e+17 Pa s = 1e 90 Glen Exponent = Real 3.0 91 92 Limit Temperature = Real -10.0 93 Rate Factor 1 = Real \$A1 94 Rate Factor 2 = Real \$A2 95 Activation Energy 1 = Real \$Q1 96 Activation Energy 2 = Real \$Q2 97 Glen Enhancement Factor = Real 1.0 98 Critical Shear Rate = Real 5.0e-7 ! Use physical con 99 ! threshold (CSR) 90 ! CSH = 1/sqrt(2A 101 ! so that CSH = 1. 102 Constant Temperature = Real -1.0</pre>
unix utf 8	
ress the enter key or double click to edit. Press the space bar or use the RMB	

le Edit View Format Merge Help	usse2a_parstokes.sif - Diffuse — + > ∽ ☞ ¥ [] 🛱 🖾
ר.//.TeteRousse_2015/Step2a/teterousse2a.sif	teterousse2a_parstokes.sif
<pre>167 Solver 3 168 Equation = "Navier-Stokes" 169 169 169 169 Stabilization Method = String Stabilized 171 Flow Model = Stokes</pre>	<pre>175 Solver 3 176 Equation = "Velocity Preconditioning" 177 Procedure = "VelocityPrecond" "VelocityPrecond" 178 Variable = -dofs 3 "V" 179 Variable Output = False 180 Exec Solver = "before simulation" 181 Element = "p:1 b:4" 182 Bubbles in Global System = False 183 184 Linear System Solver = Iterative 185 ! Linear System Solver = Direct 186 ! Linear System Direct Method = Umfpack</pre>
	<pre>187 188 Linear System Use HYPRE = Logical True 189 Linear System Symmetric = Logical False 190 Linear System Scaling = Logical True 191 Linear System Row Equilibration = Logical True 192 193 Linear System Iterative Method = FlexGMRes 194 Hypre GMRES dimension = Integer 50 105 Linear Statement Stateme</pre>
Unix utf_8	Unix utf_8

teterousse2a.sif : teterou	Isse2a_parstokes.sif - Diffuse - + ×
ille Edit View Format Merge Help	· ∽ ½ [] [] @
Q Q Q Q A A A A A A A A A A A A A A A A	<pre>teterousse2a_parstokes.sif teterousse2a_parstokes.sif teterousse2a_parstokes.sif tequation = "Pressure Preconditioning" Equation = "PressurePrecond" "PressurePrecond" To Variable = -dofs 1 "P" Variable 0utput = False The Variable 0utput = False End teterousse2a_parstokes.sif Linear System Symmetric = True End teterousse2a_parstokes.sif Linear System Solver = iterative Linear System Solver = iterative Linear System Solver = iterative Linear System Max Iterations = 1000 Linear System Preconditioning = Diagonal Linear System Residual Output = 10 Solution = Logical True Linear System Timing = True</pre>
Unix utf 8	Unix utf 8
ress the enter key or double click to edit. Press the space bar or use the RMB m	


ile Edit View Format Merge Help	
י ר ס בו בי וויין לא מושי מי	teterousse2a_parstokes.sif
	<pre>237 Solver 5 238 Equation = "Stokes" 239 Procedure = "ParStokes" "StokesSolver" 240 Element = "p:1 b:4" ! linear p-element, 4deg buubles 241 Bubbles in Global System = False ! needed to keep sy 242 Variable = "FlowVar" 243 Variable Dofs = 4 244 Convective = Logical False 245 ! 246 ! Keywords related to the block preconditioning 247 ! 248 Block Preconditioning = Logical True 249 Block Diagonal A = Logical True ! use diag(A11,A22,A 250 Use Velocity Laplacian = Logical True ! replaces dia 251 252 Linear System Scaling = Logical True 253 Linear System Solver = "Iterative" 255 Linear System GCR Restart = Integer 50</pre>
Unix utf 8	Unix utf 8

- Change all occurrences of "Flow Solution" into "FlowVar"
- And add the Flow-Preconditioner Variable "V" to boundary conditions
- Also, don't forget to increase numbers of solvers in "Equation 1"
- And to change name for output, in order to compare the results

	sse2a_parstokes.sif - Diffuse - + >
ile Edit View Format Merge Help	
ⓑⓑ ✿∓★★± ┥ゅ★ ** **	× ∽ ½ [] f] <2
ο Ο 📭//TeteRousse_2015/Step2a/teterousse2a.sif	່⊡້າ Ωຼຸ 🛄 teterousse2a_parstokes.sif
230	310
231 Equation 1	311 Equation 1
232 Active Solvers(5) = 1 2 3 4 5	312 Active Solvers(7) = 1 2 3 4 5 6 7
233 End	313 End 314
234	315
236 ! lateral side of the glacier	316 ! lateral side of the glacier
237 Boundary Condition 1	317 Boundary Condition 1
238 Target Boundaries = 1	318 Target Boundaries = 1
239 Velocity 1 = real 0.0	319 FlowVar 1 = Real 0.0
240 Velocity 2 = real 0.0	320 FlowVar 2 = Real 0.0
	321 FlowVar 3 = Real 0.0
	322 V 1 = Real 0.0 323 V 2 = Real 0.0
	324 V 3 = Real 0.0
241 End	325 End
242	326
243 ! cavity roof and Bedrock	327 ! cavity roof and Bedrock
244 Boundary Condition 2	328 Boundary Condition 2
245 Bottom Surface = Equals ZbDEM	329 Bottom Surface = Equals ZbDEM
Unix utf 8	Unix utf 8
ress the enter key or double click to edit. Press the space bar or use the RMB m	

			tetero	usse2a.sif : t	eterousse	2a_par	stokes.	sif - D	iffuse					+ x
le Edi	it View Format	t Merge Hel	р											
p 4	b 🌣 Ŧ	+ + ±	→	+ *+ +	5	<u>م</u> م		6 🛛						
_		//TeteRou	isse_2015/Step2a/t	eterousse2a.sif	Ō	n ⊡į	<u></u>		tetero	usse2a_pa	arstokes.si	f		
	cavity roof oundary Condi Bottom Surfa Velocity 1 = Velocity 2 = Velocity 3 =	ition 2 ace = Equal o sliding = Real 0.0 = Real 0.0			32 32 33 33 33	7 ! cav 8 Bound 9 Bot 0 1 ! 2 Flo 3 Flo 4 Flo 5 V 1	dary Co tom Su	No sl = Rea = Rea = Rea l 0.0	= Equals 2 iding l 0.0 l 0.0	Zbdem				
252 ! 253 254 255 256 257	Real MATC Velocity 2 (Real MATC	Condition = "-(tx(0) > Condition = "-(tx(0) >	Variable ZbDE	1, BedDEM	33 34 34 34 34 34 34 34 34 34 34 34 34 3	8 ! MAT 9 V 1 0 R 1 V 2 2 R 3 V 3 4 R 5 Flo	L Condi Real MA 2 Condi Real MA 3 Condi Real MA pwVar 1	tion tion = TC "-(tion = TC "-(tion = TC "-(Condi	Variable tx(0) > t> Variable tx(0) > t> Variable tx(0) > t> tion = Var tx(0) > t>	<pre>(1))" ZbDEM, (1))" ZbDEM, (1))" (1))" riable Z</pre>	BedDEM BedDEM	edDEM		
			\supset	Unix u	:f_8)			Unix	utf_8	

