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Background

• Motivation:  improving the ability of Elmer solver to handle large discrete partial 
differential equation models

• The bottleneck is typically associated with the performance of iterative solvers for 
linear systems

• A key challenge:  identify an efficient preconditioner P which makes solving

quick and which is also amenable for a parallel implementation

• A special feature of many challenging problems:  strong (physical) coupling of 
constituent fields

• Basic approaches to design preconditioners:  Fully algebraic or physics-
based/block preconditioning
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Background cntd.

• Traditionally in Elmer: the algebraic approach, like ILU

• Coupled multi-physic problems via segregation:

• Solved via Gauss-Seidel type of iteration:
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Background cntd.

• If you succeed with an algebraic preconditioner: smile, whistle and be 

happy

o no other approach will usually outperform your current one

o BUT: In difficult situations (= large parallel runs) you usually fail with purely 
algebraic preconditioning

• In such (difficult) cases: Physics-based/block preconditioning

o Alternatively: monolithic discretization (=all variables in one sweep); direct solvers

o Examples: Ice flow: (equation of motion + free surface + incompressibility); 
Acoustic wave propagation: (equation of motion + energy conservation + 
continuity); Coupled systems: utilize the block structure of the monolithic system 
to derive a preconditioner
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Design of a new preconditioner

• Solution of:

• Traditionally: produce iterates of

• New approach: minimize  

over 

• Preconditioner = operator, which from previous iterate produces new search 

directions by solution of:
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Search directions

Residual

Residual correction system
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• Implemented in the ParStokes
solver

• Needs additional pseudo-solvers 
to provide the matrix space for 
velocity as well as pressure block

• Use only for large scale problems, 
where algebraic preconditioner + 
Krylov-subspace solvers don’t 
work and direct solver (MUMPS) 
exceed sensible memory 
resources

Algorithm (GCR)



Requirements

• Robustness:  
o Iteration counts do not depend on the problem size

o Robust with respect to variations of essential model parameters

o If robust, parallel scalability (weak) depends heavily on the scalability of the 
subsidiary computations

• Efficiency:  
o The subsidiary computations corresponding to the application of the preconditioner 

done efficiently by exploiting optimal complexity solvers.

o Need preconditioners the action of which operations may be computed by solving 
elementary models

• We focus here on exploring to what extent the requirements of the 
robustness and efficiency are met in the case of the examples considered.
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Full Stokes

• Solver for:

• Strain-rate tensor

• Glen’s flow law: 
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Weak formulation + linearization

• Find for any                     a set of                   such that
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Picard linearization



Stabilization

• Inf-Sup condition: stabilization by using different approximation spaces for 

velocity and pressure (saddle-point problem)

• Bubble stabilization: 

• Recommended degrees of bubbles: brick 7, tetrahedron 5, wedge 6

• Bubbles are eliminated from matrix, but cost during assembly 
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The preconditioner

• The full linearized system:

• The preconditioner:

• Replacement of pressure-Schur complement: 
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Velocity block ~ Laplacian

continuity stabilization

grad p

Pressure-Schur complement



Performance

• A thin domain ⇒ high element aspect ratios ⇒ weakened finite element

o stability may have an effect on the effectiveness of the preconditioner

• The robustness of the preconditioner with respect to natural variations of 

the ice viscosity

• The solver performance for different linearization strategies

• The use of the stress-divergence form couples the solution of the 

components of the velocity, i.e. A is not block diagonal ⇒ ways to utilize 

component-wise linear solves?
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Different linearization strategies
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Block diagonal approximation

• For Picard linearization
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Example: Tete-Rousse

• Replacing standard Navier-Stokes solver in teterousse2a.sif with ParStokes

• Warning: you will be disappointed in terms of performance, because:

o This is a very small case

o The aspect ratio of elements is very small

o The original case works with algebraic pre-conditioner, which always is faster

• So, this is just a demo on how to set up the simulation

• Next slides show the side-by-side changes
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Example: Tete-Rousse
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Example: Tete-Rousse
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Example: Tete-Rousse
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Example: Tete-Rousse
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Example: Tete-Rousse
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Example: Tete-Rousse
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Example: Tete-Rousse

20.11.2015 Elmer/Ice Advanced Course 22



Example: Tete-Rousse
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• Change all occurrences of “Flow Solution” into “FlowVar”

• And add the Flow-Preconditioner Variable “V” to boundary conditions

• Also, don’t forget to increase numbers of solvers in “Equation 1”

• And to change name for output, in order to compare the results



Example: Tete-Rousse
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Example: Tete-Rousse
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Example: Tete-Rousse
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