

Elmer/Ice Glaciological Modelling

Glaciological Modeling with the Finite Element Package Elmer/Ice

Thomas Zwinger and ...

- CSC: Juha Ruokolainen, Peter Råback, Mikko Lyly (now ABB) and Mika Malinen
- LGGE, UJF, Grenoble: Olivier Gagliardini, Fabien Gillet-Chaulet, Gaël Durand, Lionel Favier, Jean Krug
- ILTS, Univ. of Hokkaido, Sapporo: Hakime Seddik, Ralf Greve
- BAS: Carlos Martìn
- Arctic Centre, Rovaniemi: Martina Schäfer, Rupert Gladstone
- Univ. Swansea: Sue Cook, Ian Rutt
- Univ. Uppsala: Jonas Thies, Josefin Alkrona

Projects and Partners

Contents

General overview on ice-flow modeling

- Basic equations (Stokes equations)
- And their approximations (SIA,SSA)
- Introduction of Elmer/Ice
 - Ice sheet modelling with Elmer/Ice
- Some numerical concepts
 - Saddle point problem
 - Parallel runs

The Big Picture

- Until recently no ice sheet model (ISM) capable of correctly dealing with the marine ice sheet problem; tightly linked: calving
- Currently no deeper understanding of basal sliding processes
- Influence of **anisotropy** in ice flow
- ISM integration in Earth System Models (ESM)
 - Glaciers in warming climates
 - Local interaction of weather with ice surfaces

Small Reynolds/Froude number limit → Stokes

Shear thinning fluid \rightarrow Norton-Hoff law with n=3 (Glen's flow law)

$$\boldsymbol{\tau} = \eta(\boldsymbol{\Pi}_{\dot{\epsilon}}) \, \dot{\boldsymbol{\epsilon}} = \left(\frac{A^{-1/n}(\boldsymbol{T}, \boldsymbol{p})}{2} (\sqrt{\boldsymbol{\Pi}_{\dot{\epsilon}}})^{(1-n)/n}\right) \boldsymbol{\epsilon}$$

● Arrhenius law for rate factor
 → thermo-mechanical coupling

$$A(T,p) = 2E \exp\left(-Q/RT'\right)$$

Evolution of the free surface/flow height:

 Accounting for all components of the stress tensor = Full Stokes (FS) model

- "Cheating" by neglecting certain components:
 - Approximations, usually based on flatness assumption

CSC

Approximations to FS

Shallow Ice Approximation (SIA)

$$\epsilon = \frac{H}{L} \to 0$$

- Only vertical shear stresses
- Continuity equation \rightarrow elliptic
- Momentum balance \rightarrow simple relation (PDE)

Approximations to FS

- Ice sheets and even glaciers are much longer than thick; generally SIA holds
- Limits of SIA and SSA:
 - Everywhere where $\epsilon \rightarrow 0$ does not hold

CSC

Full Stokes?

- Stokes flow in 3D: 4 DOFs (u,v,w,p)
- Expensive!
- Greenland ice sheet (GIS): 1.7x10⁶ km²
- Solution → 6x10⁶ horizontal cells
- 15 vertical layers → 1x10⁸ bulk elements/nodes

- Maintained and supported by CSC
- Open Source (GPL2 or later)
 - Transparence (you co-own the code)
 - Sustainability (no license fees)
 - Viral effect of GPL (new code also GPL)
- Large international user community
 - Knowhow of well-established institutions
- Good level of support/documentation <u>http://elmerice.elmerfem.org</u>

- Finite element method (FEM)
 - Able to produce adaptive meshes
 - Using linear elements and standard Galerkin with Stabilized Finite Elements
- Solution Flow law → viscosity changes by order of magnitudes → bad conditioned system:
 - Direct parallel Solver
 - Special pre-conditioning
- (Massive) parallel computing
 - MPI
 - Multi-threading under development

CSC

Implemented Glaciological models:

- Unstructured meshing
- Deforming and moving meshes
- Rheology: Glen, anisotropy, firn densification
- Special sliding laws
- NetCDF-readers (for geometry as well as coupling to climate)
- Simple SMB (PDD)
- Simple calving model
- Inverse methods for data assimilation
- Methods for tracer transport/dating

- Currently developed/planned Glaciological models:
 - Coupling of SIA and FS
 - Hydrological model for soft-bedded (till) glaciers
 - Hydrological model for hard-bedded glacier
 - Enhanced calving laws (including issues with mesh updates)
 - Coupling to ocean model
 - Till deformation model

csc

Ice-sheets

- Challenging by size
- Centuries rather than millennia
- Needs high performance computing (HPC) facilities

Different Applications of Elmer/Ice Full Stokes modelling

CSC

J

- Different types of sliding surfaces
 - Till (deforming sediment)
 - Hard rock
- Strong involvement of bed hydrology
- Bedrock processes not really understood and hard to determine from observations

CSC

Inverse Problem: Determine sliding conditions from surface velocities

Solving iteratively Dirichlet (prescribed surface velocities) and Neuman (vanishing surface stress) problem

CSC

 Optimization with respect to the bed friction coefficient β by Gâteaux derivative d_βJ of cost function:

$$J = \int_{A} \left(\vec{u}_N - \vec{u}_D \right) \cdot \left(\sigma_N - \sigma_D \right) \cdot \vec{n} \, dA$$

csc

Ice sheet that terminates at sea

Ice that passes the grounding line (GL) contributes to sea level rise (SLR)

\blacksquare Vast increase of outlet and retreat \rightarrow SLR

Howat et al. (2007)

Sudden change of stress field at GL

 Characteristics of a boundary layer

csc

Marine Ice Sheets

- (Mesh) Size matters
- Different steady states depending on resolution
- Consistent for

 $\Delta x < 200 \,\mathrm{m}$

G. Durand, O. Gagliardini, T. Zwinger, E. Le Meur, and R. Hindmarsh (2009) *Full Stokes modeling of marine ice sheets: influence of the grid size*, Annals Glaciol., 52, 109-114

CSC

Marine Ice Sheets Moving to 3D – pinning point

L. Favier, O. Gagliardini, G. Durand, and T. *Zwinger A three-dimensional full Stokes model of the grounding line dynamics: effect of a pinning point beneath the ice shelf* The Cryosphere Discuss., 5, 1995-2033, 2011

CSC

Calving

- Columbia glacier, Alaska, USA
- Nye formulation
- Including water level inside crevasses
 - Shift of terminus by 200 m well within the range of observations

S. Cook, T. Zwinger, I.C. Rutt, S.O'Neel and T. Murray (2011) *Testing the effect of water in crevasses on a physically based calving model*, Annals Glac. 53, accepted

Anisotropy

- Mono-crystalline ice Fabric of potentiation ice is extremely anisotropic
- Polar ice is a polycrystalline material

Schmid

Anisotropy

- Fabric is influenced
 by shear history =
 dynamics
- Feedback via rheology

Material ice

Influence of anisotropy

> F. Gillet-Chaulet, O. Gagliardini, J. Meyssonnier, T. Zwinger, J. Ruokolainen (2006) *Flow-induced anisotropy in polar ice and related ice-sheet flow modelling*, J. Non-Newtonian Fluid Mech. 134, p. 33-43.

CSC

Glaciers

Katabatic windfront impinging on blue ice area at Scharffenberg -bottnen, DML, EAAIS Elmer, VMS turbulentce

model

Circulation by T. Zwing

Simulation by T. Zwinger and T. Malm

Conservation of linear momentum

• Weak formulation:

$$\begin{split} -\int_{\Omega} \left(\boldsymbol{\tau} - \mathbf{1} \boldsymbol{p} \right) \cdot \nabla \varphi_{\alpha} d\Omega &+ \oint_{\Gamma} \boldsymbol{t} \varphi_{\alpha} d\Gamma \\ &= \int_{\Omega} \varrho \boldsymbol{g} \varphi_{\alpha} d\Omega \end{split}$$

• Linearization of deviatoric stress:

$$\boldsymbol{\tau}|_{(n)} = \eta(\dot{\boldsymbol{\epsilon}}|_{(n-1)})\dot{\boldsymbol{\epsilon}}|_{(n)}$$

 $p(\boldsymbol{x}) = p_1 \varphi_1 |_{\boldsymbol{x}} + p_2 \varphi_2 |_{\boldsymbol{x}} + p_3 \varphi_3 |_{\boldsymbol{x}}$

• Discretization by weighting functions:

 $oldsymbol{u} = \sum_eta oldsymbol{u}_eta \psi_eta, \qquad p = \sum_eta p_eta \chi_eta$ $p_{\beta} \int_{\Omega} \chi_{\beta} \nabla \varphi_{\alpha} d\Omega \quad - \quad \boldsymbol{u}_{\beta} \int_{\Omega} \eta \dot{\boldsymbol{\epsilon}} (\nabla \psi_{\beta}) \nabla \varphi_{\alpha} d\Omega$ $+ \oint_{\Gamma} t \varphi_{\alpha} d\Gamma = \int_{\Omega} \varrho g \varphi_{\alpha} d\Omega$

• Standard Galerkin:

 $\psi_{\beta} = \chi_{\beta} = \varphi_{\beta}$

 $\int_{\Omega} \varphi_{\beta} \nabla \varphi_{\alpha} d\Omega - u_{\beta} \int_{\Omega} \eta D(\nabla \varphi_{\beta}) \nabla \varphi_{\alpha} d\Omega$

Saddle point problem: $S = \begin{bmatrix} -\eta D & \nabla \\ \nabla^T & 0 \end{bmatrix} = \begin{bmatrix} C^{-1} & A \\ A^T & 0 \end{bmatrix}$

$$\begin{bmatrix} C^{-1} & A \\ A^T & 0 \end{bmatrix} \cdot \begin{bmatrix} u \\ p \end{bmatrix} = \begin{bmatrix} f \\ 0 \end{bmatrix}$$

 \odot S is not positive definite

- \leftrightarrow no minimization problem
- $\leftrightarrow \exists$ non-trivial null-space for *p* (checkerboard)
- ↔ Babuska-Brezzi (aka. inf-sup) condition

Condition for stability:

$$\inf_{p} \sup_{u} \frac{p^{T} A u}{\left(u^{T} C^{-1} u\right) \left(p^{T} p\right)} \ge C$$

- Depends on the space of the test-functions
- Stabilization. Methods in Elmer:
 - 1. Residual square methods
 - 2. Residual free bubbles
 - 3. Taylor-Hood
 - 4. VMS

$$\begin{bmatrix} C^{-1} & A \\ A^T & \boldsymbol{B} \end{bmatrix} \cdot \begin{bmatrix} u \\ p \end{bmatrix} = \begin{bmatrix} f \\ 0 \end{bmatrix}$$

Contact Problem

 No-penetration condition at bedrock
 Solving: <sup>\[\frac{\phi}{\phi t} + u_x \frac{\phi h}{\phi x} + u_y \frac{\phi h}{\phi y} - u_z = a_\pmu,
 <sup>\[\frac{\phi}{\phi t} + u_x \frac{\phi h}{\phi x} + u_y \frac{\phi h}{\phi y} - u_z = a_\pmu,
 <sup>\[\frac{\phi}{\phi t} + u_x \frac{\phi h}{\phi x} + u_y \frac{\phi h}{\phi y} - u_z = a_\pmu,
 <sup>\[\frac{\phi}{\phi t} + u_x \frac{\phi h}{\phi x} + u_y \frac{\phi h}{\phi y} - u_z = a_\pmu,
 <sup>\[\frac{\phi}{\phi t} + u_x \frac{\phi h}{\phi y} + u_y \frac{\phi h}{\phi y} - u_z = a_\pmu,
 <sup>\[\frac{\phi}{\phi t} + u_x \frac{\phi h}{\phi y} + u_y \frac{\phi h}{\phi y} - u_z = a_\pmu,
 <sup>\[\frac{\phi}{\phi y} + u_x \frac{\phi h}{\phi y} + u_y \frac{\phi h}{\phi y} - u_z = a_\pmu,
 ^{\[\]\]}
</sup></sup></sup></sup></sup></sup></sup>

in combination with: $h > b + \Delta h_{\min}$

C S C

Contact Problem

Solving system: $S_{ij} h_j = a_i, \quad h_j > h_{j,\min}$ Flag, , for active nodes initialized with 0 Marking nodes with: $h_i < h_{j,\min} \Rightarrow f_j = 1$ • Manipulations: $\forall f_j = 1 : S_{ij} \to S'_{ij} = \delta_{ij}, a_i = h_{j,\min}$ Solving modified system: $S'_{ii} h_i = a'_i$ Residual of unaltered system: $R_i = S_{ij}h_j - a_i$ Flag turned back to 0: $h_j > h_{j,\min} \land R_i < 0$

Consistent, fast and robust algorithm

Contact Problem

Different types of elements:

- Standard Lagrangian
- Second order (edge + face centered)
- P-elements (highest order: 9)
- Mixed type elements (Taylor-Hood, Minielement)
- Discontinuous Galerkin
- BEM solver (e.g., Accoustics)
- Lagrangian particle tracker (alternative to DG)

C S C

csc

Linear Algebra

- Internal CRS (compact row storage) scheme
- Different solution methods in Elmer:
 - 1. Direct solution: Unsymmetrical Multi-Frontal method UMFPack (serial) and MUMPS (parallel)
 - 2. Iterative = Krylov subspace: GMRES, CG, BiCGStab, GCR
 - 3. Multi-Grid: AMG (built-in), Boomer AMG
- Pre-conditioner:
 - Diagonal, ILU(N/T)
 - Hypre: Parasails, BoomerAMG
- 29.10.2013 Block pre-conditioner

Block pre-conditioning

Linear Algebra

- Solution Not re-inventing the wheel → interfacing with comming linear algebra packages:
 - LAPack
 - UMFPACK
 - MUMPS (ScaLAPack)
 - Hypre (pre-conditioners and AMG)
 - Pardiso (multi-threaded library)
 - SparsIter (Cholmod)
 - Trilinos (J. Thies)
 - To be continued

- Modern HPC CPU's already have 6+ cores
 - Core frequency stagnating
 - Need to go parallel for improvements

Full Stokes is expensive

- 4 DOFs (3 x momentum, pressure)
- Greenland Ice Sheet:
 - $1.7 x 10^{6} \text{ km}^{2}$
 - 500 m resolution -> 6x10⁶
 horizontal cells

- Domain decomposition
- Additional pre-processing step (splitting)
- Every domain is running its "own" ElmerSolver
- Parallel process
 communication: Message
 Passing Interface (MPI)
- Re-combination of ElmerPost output

Scaling of wall clock time with dofs in the cavity lid case using GMRES+ILU0. Simulation Juha Ruokolainen, CSC, visualization Matti Gröhn, CSC.

csc

Parallel Concept of Elmer

- Altered numerics in parallel
- "Missing" parts of global system matrix, e.g., in ILU
- Communication expensive
- Direct parallel solver (MUMPS)
 - Memory hog
 - Does not scale at all

Thank you!

