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Elmer            and Elmer/Ice 

Elmer ~300 000 lines of mixed F90, C and 

C++ code 

Elmer/Ice ~20 000 lines add-on to Elmer 

Main developments in algorithms, parallel 

performance enhancement driven by 

Elmer 

– Most work is done within CSC 

– Current developments:  

OpenMP multi-threading, hybrid MPI-OpenMP 

Intel PSI porting (many-core systems) 

Sliding mesh boundaries 



Elmer/Ice installation package 

SourceForge (SF): 

http://sourceforge.net/projects/elmerfem/ 

New SVN address: 

– Checkout without SF-ID: 

svn co svn://svn.code.sf.net/p/elmerfem/code/trunk/ 

– Checkout with SF-ID (needs password): 

svn checkout --username=sflogin 

svn+ssh://sflogin@svn.code.sf.net/p/elmerfem/code

/trunk 

– Elmer/Ice is residing in a sub-directory: trunk/elmerice 

 

http://sourceforge.net/projects/elmerfem/


Elmer/Ice installation package 

Prerequisites:  

– existing Elmer installation 

– UNIX/Linux system 

– (GNU)-make 

Either define ELMERICE_HOME as the installation 

path 

Preferably: have ELMER_HOME defined and 

Elmer/Ice then is installed in 
$(ELMER_HOME)/share/elmersolver 

– Mind that you have to have rights to write the 

$ELMER_HOME-tree 



Elmer/Ice installation package 

Remove leftovers from previous builds:          
         make purge 

 

Compile:     make compile 

 

Install:         make install 

– If you need to use sudo option, use –E to copy the 

environment. 



Elmer/Ice installation package 

Installation of two additional shared objects:    

– ElmerIceSolvers.so : contains all solver 

subroutines (physical models) 

– ElmerIceUSF.so: contains all user functions 

(boundary conditions, etc.) 

Call syntax: 

– Procedure = File "ElmerIceSolvers" 

"NameSolver" 

– Description of all Solvers on Wiki page 

http://elmerice.elmerfem.org/wiki/doku.ph

p?id=solvers 

 

http://elmerice.elmerfem.org/wiki/doku.php?id=solvers
http://elmerice.elmerfem.org/wiki/doku.php?id=solvers


Glen’s flow law 

Until recently:  

– used the Elmer built-in power law and 

provided the temperature-dependent 

part at the nodes only (MATC function) 

New Viscosity law in Elmer:  

– Viscosity model Glen in Material section 

– Evaluates all variable dependencies at 

integration points 

– Increased stability – Newton method 

works 

– Documentation in Elmer/Ice Wiki 

 



Glen’s flow law 

Viscosity Model = String "Glen" 

!Viscosity has to be set to a dummy value 

! Use “sane” value for ParStokes 

Viscosity = Real 

$1.0E13*365.25*24*3600*1.0E-06 

Glen Exponent = Real 3.0 

Critical Shear Rate = Real 1.0e-10 

 ! Rate factors  

Rate Factor 1 = Real 1.258e13 

Rate Factor 2 = Real 6.046e28   

Activation Energy 1 = Real 60e3 

Activation Energy 2 = Real 139e3  

Glen Enhancement Factor = Real 1.0 



Glen’s flow law 

 

 

! the temperature to switch between the  

! two regimes in the flow law  

Limit Temperature = Real -10.0  

 

Temperature Field Variable = String "Temp 

Homologous"  

 

! In case there is no temperature variable 

!Constant Temperature = Real -10.0 



Internal mesh extrusion 

Until recently:  

– Build 2D footprint (optimize footprint) 

– Extrude externally (e.g. ExtrudeMesh) 

– Split resulting 3D mesh into partitions 

– Disadvantages:  

3D bottleneck 

 limited in size 

Not able to utilize 

  vertical columns 



Internal mesh extrusion 

New approach: 

– Create footprint (like earlier) 

– Partition footprint 

– The rest is done inside Elmer 

Internal extrusion: 

– Keyword in Simulation: 

    Extruded Mesh Levels=10 

– This extrudes the footprint (here in 10 levels) to 

unit-height 

– Still need to prescribe the bedrock and surface 

topography 

 



Internal mesh extrusion 

Reading NetCDF information: 

– GridDataReader Under elmerice/netcdf2 

(earlier under misc-tree) 

– Naturally, needs working NetCDF installation 
Solver 1 

  Equation = “DataReader" 

  Exec Solver = "Before All" 

  Procedure = "GridDataReader" "GridDataReader" 

  Filename = File "netcdf/ALBMAPv1.nc"  

  X Name = String "x1"  

  Y Name = String "y1" 

  !--- Interpolation variable tolerances 

  X Epsilon = Real 1.0e-2  

  Y Epsilon = Real 1.0e-2  

  Epsilon Time = Real 0.01 

  !---- offsets and stretching 

  Interpolation Bias = Real 0.0  

  Interpolation Multiplier = Real 1.0  

 

     



Internal mesh extrusion 

Reading NetCDF information: 
 

  Is Time Counter = Logical True 

 

  Variable 1 = usrf  ! upper surface 

  Variable 2 = lsrf2 ! lower surface 

  Valid Min Value 1 = Real  0.0  

  Valid Min Value 2 = Real -3000.0  

   

  ! Scales the Elmer grid to match the   

  ! NetCDF grid – usually not a good idea 

  Enable Scaling = Logical False  

End 

 

   

 

       



Internal mesh extrusion 

Mapping the surfaces: 

StructuredMeshMapper 
 

Solver 5  

  Exec Solver = "Before Simulation"  

  Equation = "MapCoordinate" 

  Procedure = "StructuredMeshMapper" "StructuredMeshMapper" 

  Active Coordinate = Integer 3  

  Dot Product Tolerance = Real 0.0001 

  Minimum Mesh Height = Real 100.0 

End 

 

Boundary Condition 1 

  Name = "Bottom" 

  Bottom Surface = Equals lsrf2 

End 

 

Boundary Condition 3 

  Name = "Surface" 

  Top Surface =  Equals usrf 

End 

 



Internal mesh extrusion 

Mapping the surfaces: 

StructuredMeshMapper 

Can be used also in 

prognostic runs: 

– Uses free surface variable 

for mapping the upper 

surface 

– Also possible to be used for 

isostacy at bedrock 

– Only vertical shifting of 

mesh, no solution of pseudo-

elastic problem; stability! 

 



Block pre-conditioner 

Stokes equation:  

– Saddle-point problem: needs stabilization 

– Strong spatial variation/low-shear rate 

singularity of viscosity: bad condition number 

 

Until recently: direct solution 

– MUMPS 

– Strong limits due to memory 

– Not good scalability above ~100 processes 

– Need Krylov subspace solver to work 



Block pre-conditioner 

Stokes equation:  

 

– A is similar to an elasticity problem (Navier-

equation) 

– B is the discretized negative divergence 

– C results from stabilization  

Strategy: use pre-conditioner and solve 

with Krylov-subspace method (in our case 

GCR) 



Block pre-conditioner 

GCR: 

– Builds solution space from initial solution x0 

and a series of directional updates si 

– Minimizes the residual  

Block pre-conditioner:  

– We use P instead of K 

 to get directions:  

– M is a mass-matrix scaled with the element-

wise fluidity (instead of exact pressure-Schur 

complement) 



Block pre-conditioner 

Block pre-conditioner:  

– Remaining issue: Need approximated inverse 

of P to get a solution of 

 

 

– Advantage: can get separate solution for A-

block and M 

– Elmer provides interfaces to different libraries 

(Hypre, Trilinos) to get this solved 



Block pre-conditioner 

How to use it? 

– Source code is in 
trunk/fem/src/modules/ParStokes.src 

–  Copy the code to your directory (possibly rename 
the suffix to .f90, as some Fortran compilers are 

picky about this) and then simply compile it:  

  elmerf90 ParStokes.f90 -o 

ParStokes.so 

– Create a dummy routine (see next slide) for the 

blocks and compile it: 

 elmerf90 DummySolver.f90 -o 

DummySolver.so 



Block pre-conditioner 

SUBROUTINE DummyRoutine( Model,Solver,dt,TransientSimulation ) 

 USE DefUtils 

 USE SolverUtils 

 USE ElementUtils 

 IMPLICIT NONE 

 TYPE(Solver_t) :: Solver 

 TYPE(Model_t) :: Model 

 REAL(KIND=dp) :: dt 

 LOGICAL :: TransientSimulation 

 

 PRINT *,”Setting up block matrix” 

 

END SUBROUTINE DummyRoutine 



Block pre-conditioner 

Solver 1  

  Equation = "Velocity Preconditioning“ 

  Procedure = "DummyRoutine" "DummyRoutine“ 

  Variable = -dofs 3 "V“ 

  Variable Output = False 

  Exec Solver = "before simulation“ 

  Element = "p:1 b:4“ 

  Bubbles in Global System = False 

  Linear System Symmetric = True 

  Linear System Scaling = True 

  Linear System Row Equilibration = Logical False 

  Linear System Solver = Iterative 

  Linear System Iterative Method = BiCGStab 

  Linear System Max Iterations = 250 

  Linear System Preconditioning = ILU0 

  Linear System Convergence Tolerance = 1.0e-6 

  Linear System Abort Not Converged = False 

  Skip Compute Nonlinear Change = Logical True 

  Back Rotate N-T Solution = Logical False 

  Linear System Timing = True 

 End 

Dummy 

solver, just to 

allocate the 

matrix block 

Defines the 

solution 

parameters 

that are taken 

over by 

ParStokes 

 



Block pre-conditioner 

Solver 2 

  Equation = "Pressure Preconditioning“ 

  Procedure = "DummyRoutine" "DummyRoutine“ 

  Variable = -dofs 1 "P“ 

  Variable Output = False 

  Exec Solver = "before simulation“ 

  Element = "p:1 b:4“ 

  Bubbles in Global System = False 

  Linear System Symmetric = True 

  Linear System Scaling = True 

  Linear System Solver = iterative 

  Linear System Iterative Method = CG 

  Linear System Max Iterations = 1000 

  Linear System Convergence Tolerance = 1.0e-6 

  Linear System Preconditioning = Diagonal 

  Linear System Residual Output = 10 

  Skip Compute Nonlinear Change = Logical True 

  Back Rotate N-T Solution = Logical False Linear  

  System Timing = True 

End  

   

Dummy 

solver, just to 

allocate the 

matrix block 

Defines the 

solution 

parameters 

that are taken 

over by 

ParStokes 

 



Block pre-conditioner 

Solver 3 

 Equation = "Stokes“ 

 Procedure = "ParStokes" "StokesSolver“ 

 Element = "p:1 b:4“ 

 Bubbles in Global System = False 

 Variable = FlowVar 

 Variable Dofs = 4 

 Convective = Logical False 

 Block Diagonal A = Logical True 

 Use Velocity Laplacian = Logical False 

 !Keywords related to the block preconditioning 

 Block Preconditioning = Logical True 

 Linear System Scaling = Logical True 

 Linear System Row Equilibration = Logical True 

 Linear System Solver = "Iterative“ 

 Linear System GCR Restart = Integer 200 

 Linear System Max Iterations = 200 

 Linear System Convergence Tolerance = 1.0e-6  

 Nonlinear System Max Iterations = 100 

 Nonlinear System Convergence Tolerance = 1.0e-5  

 Nonlinear System Newton After Tolerance = 1.0e-3  

End 

The outer 

iteration of the 

saddle-point 

problem 

Pre-defined 

GCR method 

Needs the 2 

dummy-solver 

(uses memory) 

 



Mass consistent normals 

Especially on noisy bed with linear test 

functions normal vectors are discontinuous 

– Artificial sink/source of mass 

New way to deduce mass consistent nodal 

normal vectors from elements 

 

 

 

Mass consistent normals = Logical True    

M. A. Walkley, et al. , On the calculation of normals in free-

surface flow problems, Comm. Num. Meth. Engrg., 20, 2004 



Results AAIS 

2D footprint reordered by 

YAMS (60k elements) 

Internally extruded using 

ALBMAP dataset (NetCDF 

reader + 

StructMeshMapper) 

Temperatures interpolated 

from Pattyn-output 

Sliding values from 

inversion on coarser mesh 

Block-Preconditioner as 

solution 



Results AAIS 


