Basal melting and moderately

 complicated box models

Robert Law
Departneert of Earth Science, University of Bergen

This work is based on

 (Law et al., 2022)
EARTHARXIV COVERSHEET

Complex motion of Greenland Ice Sheet outlet glaciers with basal temperate ice

This manuscript has been submitted to Science Advances and has not been peer-reviewed.

Robert Law-r1491@cam.ac.uk, @_Rob_Law
Poul Christoffersen-pc350@cam.ac.uk
Emma 'Mickey' MacKie - emackie@ufl.edu
Samuel Cook - samuel.cook@univ-grenoble-alpes.fr
Marianne Haseloff - marianne.haseloff@northumbria.ac.uk
Olivier Gagliardini - olivier.gagliardini@univ-grenoble-alpes.fr

Basal melting

-Fairly simple

Basal melting

Basal melting

USF_basal_melt.F90

```
!same treatment for GHF
GHF_vector(1) = 0.0_dp
GHF_vector(2) = 0.0_dp
GHF_vector(3) = GHF
GHF}\mp@subsup{}{}{-}=\mathrm{ DOT_PRODUCT(Normal, GHF_vector)
```

MbNode $=($ FrictionHeatNode + GHF + IceFluxNormal)/EnthNode

Basal melting

-Uses the output of getrrictionHeat function -notGetFrictionHeating function as output in $W m^{-2}$ makes the former easier to work with here

Problem: how to model just a chunk of glacier?

-Initially just tried a "sensible" velocity field input for a cuboid from plane strain assumptions.
-This didn't work .
-(free surface blows up, model doesn't like a fixed surface, hard to know if the velocity field is reasonable).

Answer: make the chunk periodic first

Blue sides zero flux
Green sides periodic

Answer: make the chunk periodic first

ction x^{--}

Then set "best-guess" parameters for:
Rheology (Duval, 1977; Duval, 1987; Haseloff et al., 2019; Adams et al., 2021).

Sliding (Helanow et al., 2021).
Swing the gravity vector as a crude inversion method.

Ies zero flux sides periodic

Answer: make the chunk periodic first

However! Thermomechanically coupled modelling is incompatible with periodic boundary conditions.

SO: Run with a constant enthalpy field first to obtain the input velocity field and free surface value.

Then: A thermomechanical run can be obtained under the assumption that this doesn't greatly affect the free surface.

Note that there were some issues regarding normal vector continuity at periodic boundary conditions, but this was addressed a year or so ago.

EGU results

-These are for synthetic sinusoidal DEM.

paper results

paper results

Doyle et al. (2018)

Ryser et al. (2014)

Thanks:]

