

Inverse methods implemented in Elmer/Ice (1)

Fabien Gillet-Chaulet, LGGE – Grenoble, gillet-chaulet@lgge.obs.ujf-grenoble.fr

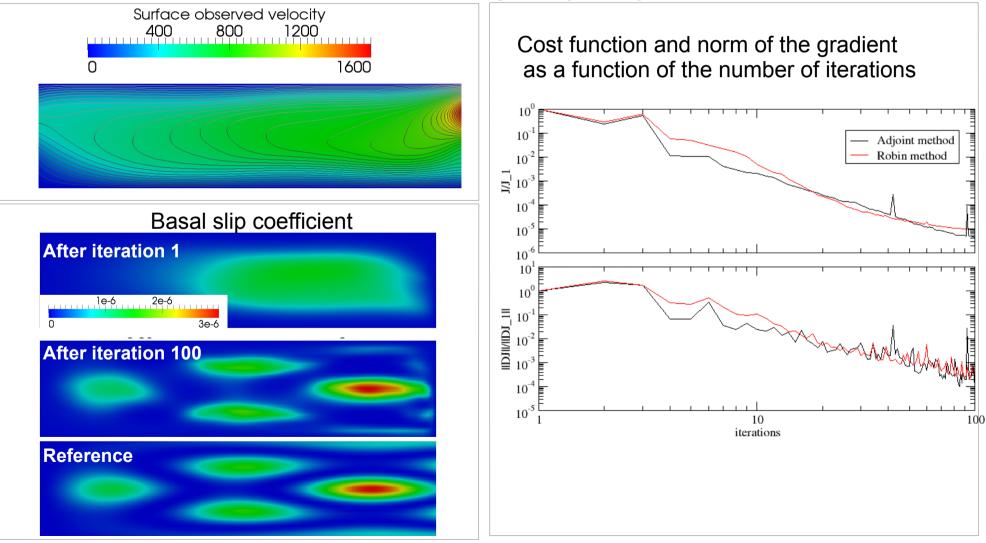
- Robin Inverse method (Arthern and Gudmundsson, 2010)
 - Based on the computation of :
 - the « usual » Stokes problem (natural Neumann condition on the free surface)
 - the Dirichlet problem (observed surface velocities imposed as Dirichlet condition son the free surface)
- **Control Inverse method** (Mac Ayeal, 1993, Morlighem et al., 2010, Petra et al., 2012, ...)
 - Based on the computation of the **Adjoint state** (the **non linear stokes** problem is **self-adjoint** when equipped with the Newton linearisation (Petra et al., 2012))
- Efficient minimisation of the cost function
 - Minimisation is done using the M1QN3 library (Gilbert and Lemaréchal, 1989), based on a limited memory quasi-Newton algorithm (L-BFGS method)
- Already successfully applied to infer the badly known basal friction field
 - Jay-Allemand et al., 2011; Shäfer et al, 2012; Gillet-Chaulet et al, 2012
- Solvers for the inversion of the basal friction now under the "elmerice" repository
 - Solvers for the inversion of the ice viscosity will follow shortly with documentation in the wiki and test cases
 - Adjoint solvers can be extended for the inversion of Neumann or Dirichlet boundary

Inverse methods implemented in Elmer/Ice (1)

Fabien Gillet-Chaulet, LGGE – Grenoble, gillet-chaulet@lgge.obs.ujf-grenoble.fr

- Robin Inverse method (Arthern and Gudmundsson, 2010)
 - Based on the computation of :
 - the « usual » Stokes problem (natural Neumann condition on the free surface)
 - the Dirichlet problem (observed surface velocities imposed as Dirichlet condition son the free surface)
- Control Inverse method (Mac Ayeal, 1993, Morlighem et al., 2010, Petra et al., 2012, ...)
 - Based on the computation of the Adjoint state (the non linear stokes problem is selfadjoint when equipped with the Newton linearisation (Petra et al., 2012))

Efficient minimisation of the cost function


- Minimisation is done using the M1QN3 library (Gilbert and Lemaréchal, 1989), based on a limited memory quasi-Newton algorithm (L-BFGS method)
- Already successfully applied to infer the badly known basal friction field
 - Jay-Allemand et al., 2011; Shäfer et al, 2012; Gillet-Chaulet et al, 2012
- Solvers for the inversion of the basal friction now under the "elmerice" repository
 - Solvers for the inversion of the ice viscosity will follow shortly with documentation in the wiki and test cases
 - Adjoint solvers can be extended for the inversion of Neumann or Dirichlet boundary conditions

Inverse methods implemented in Elmer/Ice (2)

Fabien Gillet-Chaulet, LGGE – Grenoble, gillet-chaulet@lgge.obs.ujf-grenoble.fr

- A test case for the inversion of the basal slip coefficient is under: ELMER_HOME/elmerice/examples/InverseMethods
- Twin experiments based on Mac Ayeal (1993) example

Fabien Gillet-Chaulet, LGGE – Grenoble, gillet-chaulet@lgge.obs.ujf-grenoble.fr

- Interpolation of scattered 2D data (e.g, ice thickness along flight lines, etc...) onto the FE mesh
- Scattered data are given under the form of 3-columns ASCII files (x,y,value)
- Natural Neighbours interpolation or cubic spline approximation
 - Based on external c-librairies
 - nn (http://code.google.com/p/nn-c/)
 - csa (http://code.google.com/p/csa-c/)
 - The user is advised to get familiar with these libraries

• To compile the solver:

- 1- Download/install these libraries on your favourite computer
- 2- Edit/update the file "ELMER_HOME/elmerice/Solvers/MakefileScattered2D.inc"
- 3- Compile the ElmerIceSolver library

Scattered 2D Data Interpolator (2)

Fabien Gillet-Chaulet, LGGE – Grenoble, gillet-chaulet@lgge.obs.ujf-grenoble.fr

• A test case is under:

ELMER_HOME/elmerice/examples/Scattered2DDataInterpolator

- "True" $Zs = 500 10^{-3} x + 20 (\sin (3 \pi x/L_x) \sin (2 \pi y/L_y))$
- Generate 200 points at random locations
- Interpolate on the FE mesh using the c libraries

• Future developments:

- Read NETCDF files
- Use the ability of the csa library to use standard error