
EGU Elmer/Ice Splinter Meeting 2014

Elmer/Ice new development

Elmer-team

Parallel concept of Elmer

SOLUTION

VISUALIZATION

ASSEMBLY

PARTITIONING

MESHING GMSH

MPI

Parallel concept of Elmer

Trilinos

HUTIter

MATC

BLAS LAPack UMFPack

Pardiso

Hypre

SuperLU

CholMOD

MUMPS

ScaLAPack

BLACS

Parallel Concept of Elmer

! Domain decomposition
! Additional pre-processing step

(splitting)
! Every domain is running its

”own” ElmerSolver
! Parallel process

communication: Message
Passing Interface (MPI)

! Re-combination of ElmerPost
output

Parallel Concept of Elmer

Elmer parallel mesh

! Best way to partition:
Serial mesh → ElmerGrid → parallel mesh

! General syntax:
ElmerGrid 2 2 existing [partoption]

! Principle 2 partitioning techniques:
1.  Along Cartesian axis (simple geometries/topologies)
2.  Using METIS library

Internal Extrusion

! Implemented as an internal strategy in Elmer (2013)
–  Juha, Peter & Rupert

! First partition a 2D mesh, then extrude into 3D
! Implemented also for partitioned meshes

–  Extruded lines belong to the same partition by
construction!

! Deterministic, i.e. element and node numbering
determined by the 2D mesh
–  Complexity: O(N)

! There are many problems of practical problems where
the mesh extrusion of a initial 2D mesh provides a good
solution
–  One such field is glaciology where glaciers are thin, yet the 2D

approach is not always sufficient in accurary

Internal extrusion
Extruded Mesh Levels = 11

By default z in [0,1]

Internal extrusion
Extruded Mesh Levels = 11
Extruded Mesh Density = Variable Coordinate 1
 Real MATC "0.2+sin(pi*tx)"

Any functional
dependence is ok as long
as it is positive!

The optimal division is
found iteratively using
Gauss-Seidel type of
iteration and large
variations make the
iterations converge slowly.

Internal Extrusion

! StructuredMesh
Mapper to impose
geometry to a
topological prism (3D)

!  Define functions at
bottom:

Bottom Surface = Variable
"Coordinate 1“

 Real MATC "0.1*cos(5*tx)"
!  And surface:
Bottom Surface = Variable

"Coordinate 1“
 Real MATC "0.1*cos(5*tx)"

Solver 2
 Equation = "MapCoordinate"
 Procedure = "StructuredMeshMapper"
"StructuredMeshMapper"
 Active Coordinate = Integer 2
End

ElmerSolver parallel

! Different executable: ElmerSolver_mpi
! Depending on platform/MPI: mpirun –np N

 > mpirun –np 6 ElmerSolver_mpi

! Needs information for different processes,
which SIF to load: ELMERSOLVER_STARTINFO

! User defined functions/routines usually do not
need special rewriting for MPI

ElmerSolver parallel

! Alternative pre-condtioner in Hypre:
–  ParaSails (sparse approximate inverse

preconditioner):
Linear System Preconditioning = String
"ParaSails“

–  BoomerAMG(Algebraic Multigrid):
Linear System Preconditioning = String
“BoomerAMG“

ElmerSolver parallel

! Alternative Solver:
–  BoomerAMG(Algebraic Multigrid):

 Linear System Solver = "Iterative"
 Linear System Iterative Method =
 "BoomerAMG“

–  MUMPS (Multifrontal parallel direct solver):
 Linear System Solver = Direct
 Linear System Direct Method = Mumps

ElmerSolver parallel
! Already linear elasticity equation may pose problems for parallel

solution
! Case of linear elasticity with 500,000 unknowns

Method \ T (s) 1 2 4 16 32
Umfpack 53533

Pardiso 290 175 105 80 65
Mumps 285 190 135 86

BiCG+diag 1270 750 450 225 180
BiCG+ILU(1) 1690 1450 X 580 X

Hypre-BiCG+Parasails 505 295 145 110
Hypre-BiCG+ILU(0) X X 506 X

Note: Calculations performed on vuori.csc.fi cluster in 2010.
The solvers may have improved in performance since

ElmerSolver parallel

! Different behaviour of ILU preconditioner

•  Not available parts at

partition boundaries
•  Sometimes work
•  If not, use Hypre:

Linear System Use Hypre
= Logical True

Parallel postprocessing

! Elmer writes results in parallel
name.0.ep, name.1.ep, ...
 ... , name.(N-1).ep

! ElmerPost: fusing into one file
 ElmerGrid 15 3 name
 fuses all timesteps (also non-existing) into a single file

called name.ep (existing will be overwritten!)
–  Special option for only partial fuse:

-saveinterval start end step

Porting Elmer to MIC

! Porting work started Q2/12
! Focus to build ElmerSolver on a MIC
! Build process not entirely trivial

–  Tricks to fool automake
–  Manual editing of some resulting config-files

! ElmerSolver consistency tests
–  Initially 152 of 215 tests passed successfully
–  After a few hours of work 198 of 215 tests passed

successfully

Porting Elmer to MIC
! MIC = Many Integrated Core

–  x86 –architecture
–  Up to 60 cores with 4-way HT
–  Single MIC core not as powerful as Xeon core

! ElmerSolver porting on MIC started on 2Q/
2012
–  Sparse matrix vector products vectorized
–  Support for MKL Pardiso and SpDGEMV added
–  Some solvers modified to support OpenMP
–  Code is thread safe

!  all consistency tests passed

Elmer OpenMP status

! Internally OpenMP threading supported by
–  Solver API routines related to element assembly
–  Time integration routines
–  Sparse matrix vector products
–  Element assembly loop of some solvers

(MagnetoDynamics2D, ShallowWaterNS,
StatElecSolve, ThermoElectricSolver)

! Library support for OpenMP exists in
–  External BLAS routines
–  External LAPACK routines
–  Direct solvers such as Cholmod, SPQR and Pardiso

MIC: Assembly

Poisson model problem, 1M Hexahedral elements

MIC: CG Performance

! Implemented standard conjugate gradient (CG)in
a NUMA aware way
–  Distribute matrix row wise to different threads
–  Construct the whole iteration loop as single parallel

region (avoid fork/join overhead)
–  Use local temporal vectors
–  Align accesses to global work vectors on 64-byte

boundaries

! Compiler: use ASSUME_ALIGNED and SIMD
pragmas

! Reduction inside parallel region: ATOMIC and
BARRIER

MIC: CG Performance

Xeon Phi & Intel MKL Pardiso
! Pardiso is one of the most advanced

multifrontal direct solvers
! MKL version is multithreaded for Xeon Phi

Case

Time(s)
nt=1

nt=60

nt=120

Speedup
nt=60

nt=120

P1 10.93 3.82 4.38 2.86 2.50
P2 67.86 12.36 12.90 5.49 5.26
P3 429.55 49.02 48.23 8.76 8.91
E1 12.92 3.14 3.50 4.12 3.70
E2 169.91 18.63 19.28 9.12 8.81
E3 1492.79 86.46 79.28 17.26 18.83

Test problems for multithreading

Equatio
n

Case n nz(A) nz(A)/n

Poisson P1 35,721 896,761 25.1

P2 105,300 2,702,656 25.6

P3 291,060 7,580,368 26.0

Elasticity E1 24,843 1,786,545 71.9

E2 107,163 8,070,849 75.3

E3 315,900 23,323,90
4

77.0

Mikko Byckling, Solving sparse linear systems in a many-core environment,
Sparse Days Meeting 2013, CERFACS, Toulouse.

Thank you!

! Saddle-point system - stabilization:

! Bad condition number – direct solver
! Block pre-conditioner:

–  inverse, P-1, still requires the exact solution of
linear systems with A and M

Numerics

Numerics

!  Strong scaling
–  10k, 100k, 1M
–  Comparison

MUMPS and
BPC

–  Super-linear
scaling for BPC

Massive parallel computing @Fabien Gillet-Chaulet, LGGE

1 900 000 nodes on 400 partitions
~7 000 000 dofs

Numerics

