| Introduction | Initial steady state                    | Snow Cave                                                | Rigid container                    | Conclusion |
|--------------|-----------------------------------------|----------------------------------------------------------|------------------------------------|------------|
|              | Comparing the long<br>container b       | -term fate of a sn<br>uried at Dome C,                   | ow cave and a rigi<br>Antarctica   | d          |
|              | Julien Brondex <sup>1,*</sup> , Olivier | Gagliardini <sup>1</sup> , Fabien<br>Chekki <sup>1</sup> | Gillet-Chaulet <sup>1</sup> , Mono | dher       |

 $^1 {\rm Univ.}\,$  Grenoble Alpes, CNRS, IRD, IGE, F-38000 Grenoble, France

 $^{*}$ Now at: Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland

Monday, 5 October 2020







| Introduction | Initial steady state | Snow Cave | Rigid container | Conclusion |
|--------------|----------------------|-----------|-----------------|------------|
| •0           |                      |           |                 |            |
| Context      |                      |           |                 |            |
| Ice Memory P | roject               |           |                 |            |



"Our goal is to create a global ice archive sanctuary in Antarctica, a continent devoted to science and peace, in an effort to preserve ice cores from the world's key endangered glaciers."

- → Organisation of drilling missions on several glaciers of interest around the world
  - 2016: Col du Dôme, Mont-Blanc (France)
  - 2017: Illimani, Andes (Bolivia)
  - 2018: Belukha, Altaï (Russia)
  - 2018: Elbrus, Caucasus (Russia)
- -> Drilling missions involve extracting two or three full ice cores from each glacier
  - One for immediate analysis based on currently available techniques
  - One or two for storage in the archive
- Bring archive cores to Antarctica for long-term storage
  - Storage facilities burried into the polar firn

Need for a perennial storage solution !!



| Introduction | Initial steady state | Snow Cave       | Rigid container | Conclusion |
|--------------|----------------------|-----------------|-----------------|------------|
| 00           |                      |                 |                 |            |
| Context      |                      |                 |                 |            |
| Questions ra | aised by the ice o   | cores storage a | t Dome C        |            |

General goal: Design of a storage solution for the ice cores, which will be buried in the firn at Dome C with the aim of lasting over a hundred year period.

- What is the typical lifetime of a cave dug into the firn ?
- What are the mechanical interactions between the compressible firn and a rigid container ?
  - How does the density evolve around the container ?
  - What are the loads supported by the container ?
  - How does these loads evolve over time ?
  - What is the relative motion between the container and the top surface ?
- Does a usual shipping container could bear these loads ?
- If not, what kind of reinforcements would be required given the numerous constraints (budget, climate conditions, transport, limited technical means on site, ...)



where a and b functions of  $D = \rho / \rho_{icc}$ 

(Gagliardini and Meyssonnier, 1997)

-250

= - 2.9 cm a



#### STEP 1: Get an initial density field



Julien Brondex Elmer/Ice Users Meeting



**Relative density field** 

Vertical velocity field







| A nolar sn   | ow cave in practis   | e a constructi | on recine       |            |
|--------------|----------------------|----------------|-----------------|------------|
| Construction |                      |                |                 |            |
|              |                      | 000            |                 |            |
| Introduction | Initial steady state | Snow Cave      | Rigid container | Conclusion |



| Introduction | Initial steady state | Snow Cave       | Rigid container | Conclusion |
|--------------|----------------------|-----------------|-----------------|------------|
|              |                      | 000             |                 |            |
| Construction |                      |                 |                 |            |
| A polar sn   | ow cave in practis   | e: a constructi | on recipe       |            |



| Introduction | Initial steady state | Snow Cave       | Rigid container | Conclusion |
|--------------|----------------------|-----------------|-----------------|------------|
|              |                      | 000             |                 |            |
| Construction |                      |                 |                 |            |
| A polar sno  | w cave in practise   | e: a constructi | on recipe       |            |









Photo Credit: J.P. Steffensen, NEEM 2012 report



### STEP 2: Snow cave



| Introduction | Initial steady state | Snow Cave | Rigid container | Conclusion |
|--------------|----------------------|-----------|-----------------|------------|
|              |                      | 000       |                 |            |
| Results      |                      |           |                 |            |
| Cave shap    | e over time          |           |                 |            |



























| Introduction | Initial steady state | Snow Cave | Rigid container | Conclusion |
|--------------|----------------------|-----------|-----------------|------------|
|              |                      |           | 000             |            |
| Results      |                      |           |                 |            |
| Normal str   | ess on container r   | oof       |                 |            |























| Introduction   | Initial steady state | Snow Cave | Rigid container | Conclusion |
|----------------|----------------------|-----------|-----------------|------------|
|                |                      |           |                 | •          |
| Conclusion     |                      |           |                 |            |
| Conclusion and | d perspectives       |           |                 |            |

• Results regarding the ice cave must be confirmed by in situ tests, but it appears that:

----> The size of the trench in which the ballon is placed is very important

----> Particular conditions prevailing at Dome C seems to induce low closure rates

- The sinking of the container is slow and not very sensitive to initial density and weight (the roof is below 7.1m of snow initially, ~11.8m after 100yr and ~16.2m after 200yr of simulation)
- Normal stresses after 200yr of simulation are of ~120 kPa on the middle of roof and floor and of up to 450 kPa at angles due to strong stress concentrations
- Maximum normal stresses after 200yr of simulation are of ~60 kPa on container sides
- These results depart significantly from the ones obtained when considering hydrostatic pressure only

| Introduction | Initial steady state | Snow Cave | Rigid container | Conclusion |
|--------------|----------------------|-----------|-----------------|------------|
|              |                      |           |                 | •          |
| Conclusion   |                      |           |                 |            |
| Conclusion   | and perspectives     |           |                 |            |

# Thank you !

## .... Questions ?

















## Firn/container interface: Free slip or no slip ?



## Sensitivity to firn/container BC



#### Normal Stress on container roof

Normal Stress on container side

## Sensitivity to firn/container BC



## Is using Elmer really necessary ?



#### Ratio between normal stress on roof and hydrostatic pressure for reference simulation (no weight)



From @20a, the ratio does not evolve in time

### Modelled normal stresses always higher than hydrostatic stresses

#### Ratio between normal stress on roof and hydrostatic pressure for reference simulation (no weight)







loads is even higher for other considered cases