

Elmer/Ice Stockholm 2017

Shallow models in Elmer/Ice

Fabien Gillet-Chaulet \& Olivier Gagliardini

IGE - Grenoble - France

Outline

Shallow Shelf / Shallow stream Solver

Thickness Solver

A glacier example

Shallow Shelf Approximation/Shallow Stream Approximation

Field equations:

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial x}\left(2 H \nu\left(2 \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\right)+\frac{\partial}{\partial y}\left(H \nu\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)\right)-\beta u=\rho g H \frac{\partial z_{s}}{\partial x} \\
\frac{\partial}{\partial x}\left(H \nu\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)\right)+\frac{\partial}{\partial y}\left(2 H \nu\left(\frac{\partial u}{\partial x}+2 \frac{\partial v}{\partial y}\right)\right)-\beta v=\rho_{i} g H \frac{\partial z_{s}}{\partial y}
\end{array}\right.
$$

Boundary Conditions:

$$
\left\{\begin{array}{l}
4 H \nu \frac{\partial u}{\partial x} n_{x}+2 H \nu \frac{\partial v}{\partial y} n_{x}+H \nu\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial x}\right) n_{y}=\left(\rho_{i} g H-\rho_{w} g H_{0}\right) n_{x} \\
4 H \nu \frac{\partial v}{\partial y} n_{y}+2 H \nu \frac{\partial v}{\partial x} n_{y}+H \nu\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial x}\right) n_{x}=\left(\rho_{i} g H-\rho_{w} g H_{0}\right) n_{y}
\end{array}\right.
$$

Shallow Shelf Approximation/Shallow Stream Approximation

Field equations:

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial x}\left(2 H \nu\left(2 \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\right)+\frac{\partial}{\partial y}\left(H \nu\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)\right)-\beta u=\rho g H \frac{\partial z_{s}}{\partial x} \\
\frac{\partial}{\partial x}\left(H \nu\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)\right)+\frac{\partial}{\partial y}\left(2 H \nu\left(\frac{\partial u}{\partial x}+2 \frac{\partial v}{\partial y}\right)\right)-\beta v=\rho_{i} g H \frac{\partial z_{s}}{\partial y} \\
H=Z s-Z b
\end{array}\right.
$$

Elmer/Ice Solvers:

[^0]The SSABasalSolver solve the classical SSA equation, it has been modified in Rev. 6440 to be executed either on a grid of dimension lower than the problem dimension itself (i.e. the top or bottom grid of a 2D or 3D mesh for a SSA 1D or 2D problem), or on a grid of the same dimension of the problem (i.e. 2D mesh for a 2D plane view SSA solution).
It will work on a 3D mesh only if the mesh as been extruded along the vertical direction and if the base line boundary conditions have been preserved (to impose neumann conditions). Keyword «Preserve Baseline = Logical True» in section Simulation

Shallow Shelf Approximation/Shallow Stream Approximation

Field equations:

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial x}\left(2 H \nu\left(2 \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\right)+\frac{\partial}{\partial y}\left(H \nu\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)\right)-\beta u=\rho g H \frac{\partial z_{s}}{\partial x} \\
\frac{\partial}{\partial x}\left(H \nu\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)\right)+\frac{\partial}{\partial y}\left(2 H \nu\left(\frac{\partial u}{\partial x}+2 \frac{\partial v}{\partial y}\right)\right)-\beta v=\rho_{i} g H \frac{\partial z_{s}}{\partial y}
\end{array}\right.
$$

SIF - Solver Section:

```
Solver 1
    Equation = "SSA"
    Procedure = File "ElmerIceSolvers" "SSABasalSolver"
    Variable = String "SSAVelocity"
    Variable DOFs = 2 ! 1 in SSA 1-D or 2 in SSA-2D
    Linear System Solver = Direct
    Linear System Direct Method = umfpack
    Nonlinear System Max Iterations = 100
    Nonlinear System Convergence Tolerance = 1.0e-08
    Nonlinear System Newton After Iterations = 5
    Nonlinear System Newton After Tolerance = 1.0e-05
    Nonlinear System Relaxation Factor = 1.00
    Steady State Convergence Tolerance = Real 1.0e-3
End
```


Shallow Shelf Approximation/Shallow Stream Approximation

Field equations:

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial x}\left(2 H \nu\left(2 \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\right)+\frac{\partial}{\partial y}\left(H \nu\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)\right)-® u=\varrho \rho H \frac{\partial z_{s}}{\partial x} \\
\frac{\partial}{\partial x}\left(H \nu\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)\right)+\frac{\partial}{\partial y}\left(2 H \nu\left(\frac{\partial u}{\partial x}+2 \frac{\partial v}{\partial y}\right)\right)-ß v=\varrho\left(\theta H \frac{\partial z_{s}}{\partial y}\right.
\end{array}\right.
$$

SIF - Material Section:

! Flow Law

Viscosity Exponent $=$ Real $\$ 1.0 / \mathrm{n}$
Critical Shear Rate $=$ Real $1.0 \mathrm{e}-10$
SSA Mean Viscosity = Real \$eta
SSA Mean Density $=$ Real Srhoi
SSA Mean Density = Real \$rhoi
! Friction Law
! Which law are we using
sSA Friction Law $=$ String (
! friction parameter
SSA Friction Parameter $=$ Real 0.1
! Needed for Weertman and Coulomb
! Exponent m
SSA Friction Exponent $=$ Real $\$ 1.0 / \mathrm{n}$
! Min velocity for linearisation where ub=0
SSA Friction Linear Velocity = Real 0.0001
! Needed for Coulomb only
! post peak exponent in the Coulomb law (q, in Gagliardini et al., 2007)
SSA Friction Post-Peak $=$ Real...
! Iken's bound tau_b/N < C (see Gagliardini et al., 2007)
SSA Friction Maximum Value = Real
SSA Min Effective Pressure = Real ...
End

Shallow Shelf Approximation/Shallow Stream Approximation

Boundary Conditions:

$$
\left\{\begin{array}{l}
4 H \nu \frac{\partial u}{\partial x} n_{x}+2 H \nu \frac{\partial v}{\partial y} n_{x}+H \nu\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial x}\right) n_{y}=\left(\rho_{i} g H-\rho_{w} g H_{0}\right) n_{x} \\
4 H \nu \frac{\partial v}{\partial y} n_{y}+2 H \nu \frac{\partial v}{\partial x} n_{y}+H \nu\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial x}\right) n_{x}=\left(\rho_{i} g H-\rho_{w} g H_{0}\right) n_{y}
\end{array}\right.
$$

SIF - Boundary Conditions / Constants / Body Forces:

```
Boundary Condition 1
! Dirichlet condition
    SSAVelocity 1 = Real ...
    SSAVelocity 2 = Real ...
End
Boundary Condition 1
! Neumann Condition
    Calving Front = Logical True
End
```

```
Constants
! Used for Neumann condition
    Water Density = Real ....
    Sea Level = Real ...
End
```

```
Body Force 1
! The gravity from Flow Body Force 2/3 (1D/2D)
    Flow BodyForce 3 = Real $gravity
End
```


Computing mean values (case of a 3d mesh)

SSA uses mean viscosity and density:

$$
\begin{aligned}
& \nu(x, y)=\frac{1}{H} \int_{z_{b}}^{z_{s}} \mu(x, y, z) d z \longrightarrow \text { coupling with : Temperature, Damage } \\
& \bar{\rho}(x, y)=\frac{1}{H} \int_{z_{b}}^{z_{s}} \rho(x, y, z) d z \longrightarrow \text { coupling with : Density }
\end{aligned}
$$

You can use:

Elmer/lce solver : GetMeanValueSolver

- unstructured meshes in the vertical direction

```
Solver 1
    Equation = "SSA-IntValue"
    Procedure = File "ElmerIceSolvers" "GetMeanValueSolver"
    Variable = -nooutput String "Integrated variable"
    Variable DOFs = 1
    Exported Variable 1 = String "Mean Viscosity"
    Exported Variable 1 DOFs = 1
    Exported Variable 2 = String "Mean Density"
    Exported Variable 2 DOFs = 1
    Linear System Solver = Direct
    Linear System Direct Method = umfpack
    Steady State Convergence Tolerance = Real 1.0e-3
End
!!! Upper free surface
Boundary Condition 1
    Depth = Real 0.0
    Mean Viscosity = Real 0.0
    Mean Density = real 0.0
End
```

Elmer solver : StructuredProjectToPlane

- structured meshes in the vertical direction

```
Solver 1
    Equation = "HeightDepth"
    Procedure = "StructuredProjectToPlane" "StructuredProjectToPlane"
    Active Coordinate = Integer 3
    Operator 1 = depth
    Operator 2 = height
    Operator 3 = thickness
    !! compute the integrated horizontal Viscosity and Density
    variable 4 = viscosity
    Operator 4 = int
    Variable 5 = Density
    Operator 5 = int
End
Material 1
    SSA Mean Viscosity = Variable "int Viscosity", thickness
        REAL MATC "tx(0)/tx(1)"
    SSA Mean Density = Variable "int Density", thickness
        REAL MATC "tx(0)/tx(1)"
End
```


Outline

\checkmark Shallow Shelf / Shallow stream Solver
\checkmark Thickness Solver
\checkmark A glacier example

Thickness Solver

Field equations:

$$
\frac{\partial(H)}{\partial v}+\nabla\left(\bar{u}(H)=a_{s}+a_{b}\right.
$$

Elmer/Ice Solvers:

- Solver Fortran File: ThicknessSolver.f90
- Solver Name: ThicknessSolver
- Required Output Variable(s) H
- Required Input Variable(s): н residual
- Optional Output Variable(s): dhdt
- Optional Input Variable(s) FlowSolution
- This solver is based on the FreeSurfaceSolver and use a SUPG stabilsation scheme by default (residual free bubble stabilization can be use instead).
- As for the FreeSurfaceSolver Min and Max limiters can be used.
- As for the Free surface solver only a Dirichlet boundary condition can be imposed.
- This solver can be used on a mesh of the same dimension as the problem (e.g. solve on the bottom or top boundary of a 3d mesh to solve the 2d thickness field) or on a mesh of lower dimension (e.g. can be use in a 2D plane view mesh with the SSA solver for example)

Thickness Solver

Field equations: $\quad \frac{\partial H}{\partial v}+\nabla(\bar{u} H)=a_{s}+a_{b}$

SIF:

Solver 1
Equation = "Thickness"
Variable $=-\operatorname{dofs} 1$ "H"
Exported Variable 1 = -dofs 1 "H Residual"
!! To compute dh/dt
Exported Variable $2=-$ dofs 1 "dHdt"
Compute $\mathrm{dHdT}=$ Logical True
Procedure = "ElmerIceSolvers" "ThicknessSolver" Before Linsolve = "EliminateDirichlet" "EliminateDirichlet"

Linear System Solver = Direct
Linear System Direct Method = umfpack
Linear System Convergence Tolerance $=$ Real 1.0e-12
! equation is linear if no min/max
Nonlinear System Max Iterations $=50$
Nonlinear System Convergence Tolerance $=1.0 \mathrm{e}-6$
Nonlinear System Relaxation Factor $=1.00$
! stabilisation method: [stabilized\bubbles]
Stabilization Method $=$ stabilized
!! to apply Min/Max limiters
Apply Dirichlet $=$ Logical True
!! to use horizontal ALE formulation
ALE Formulation = Logical True
!! To get the mean horizontal velocity
!! either give the name of the variable
Flow Solution Name = String "SSAVelocity"
!!!!! or give the dimension of the problem using:
Convection Dimension = Integer

Body Force 1

!! Mass balance
Top Surface Accumulation = Real
Bottom Surface Accumulation = Real
!! if the convection velocity is not directly given by a variable
!! Then give //Convection Dimension = Integer// in the solver section
!! and the Mean velocity here:
Convection Velocity 1 = Variable int Velocity 1, thickness REAL MATC "tx(0)/tx(1)"
Convection Velocity 2 = Variable int Velocity 2, thickness REAL MATC "tx(0)/tx(1)"

End

Boundary Condition 1

! Dirichlet condition only H = Real ...

End

Coupling SSA solver / Thickness solver

SSASolver uses Zs and Zb (H=Zs-Zb)
=> requires an intermediate step between ThicknessSolver and SSASolver

```
Initial Condition 1
    H = Real ....
End
Body Force 1
! to update Zb and Zs according to H evolution
    Zb = Real ...
    Zs = Variable Zb , H
        REAL MATC "tx(0)+tx(1)"
End
Solver 1
    Equation = "UpdateExport"
    Procedure = "ElmerIceSolvers" "UpdateExport"
    Variable = -nooutput "dumy"
        Exported Variable 1 = -dofs 1 "Zb"
        Exported Variable 2 = -dofs 1 "Zs"
End
Solver 2
    Equation = "SSA"
    Procedure = File "ElmerIceSolvers" "SSABasalSolver"
    Variable = String "SSAVelocity"
    Variable DOFs = 2 ! 1 in SSA 1-D
End
Solver 3
    Equation = "Thickness"
    Variable = -dofs 1 "H"
End
```

you can write a User Function to apply flotation to Zb and $\mathrm{Zs}=\mathrm{Zb}+\mathrm{H}$

1. From H compute Zb and Zs
look for definition of Exported variables in «Body Force»
2. From Zb and Zs compute u
3. From u compute H

Examples

Friction Laws:

ismip diagnostic test cases
[ELMER_TRUNK]/elmerice/Tests/SSA_Coulomb
[ELMER_TRUNK]/elmerice/Tests/SSA_Weertman

Coupling SSA/Thickness:

[ELMER_TRUNK]/elmerice/Tests/SSA_IceSheet
[ELMER_TRUNK]/elmerice/examples/Test_SSA \qquad ismip prognostic test:

- 1D (2D mesh)
- 2D (2D mesh)
- 2D (3D mesh; use StructuredProjectToPlane to compute mean values))

Coupling Stokes/Thickness:

ismip prognostic test:
[ELMER_TRUNK]/elmerice/Tests/ThicknessSolver

Outline

\checkmark Shallow Shelf / Shallow stream Solver
\checkmark Thickness Solver
\checkmark A glacier example

Glacier geometry, SMB and initial conditions

From Le Meur et al., 2004

We will start from an ice free domain and let the glacier growths under constant SMB.

User function USF_glacier3d.F90

```
FUNCTION Bedrock(x,y) RESULT(Zb)
USE types
IMPLICIT NONE
REAL(KIND=dp),INTENT(IN) :: x,y
REAL(KIND=dp) :: Zb
    Zb=1000._dp*(1._dp+2._dp*(4300._dp-x)/4300._dp-cos(2*Pi*y/3900._dp))
END FUNCTION Bedrock
\[
B(x, y)=1000\left(1+\frac{2(4300-x)}{4300}-\cos \frac{2 \pi y}{3900}\right)
\]
```

```
FUNCTION Bed ( Model, nodenumber, VarIn) RESULT(VarOut)
```

FUNCTION Bed (Model, nodenumber, VarIn) RESULT(VarOut)
USE types
USE types
IMPLICIT NONE
IMPLICIT NONE
TYPE(Model_t) :: Model
TYPE(Model_t) :: Model
INTEGER :: nodenumber
INTEGER :: nodenumber
REAL(KIND=dp) :: VarIn
REAL(KIND=dp) :: VarIn
REAL(KIND=dp) :: VarOut
REAL(KIND=dp) :: VarOut
REAL(KIND=dp) :: Bedrock
REAL(KIND=dp) :: Bedrock
REAL(KIND=dp) :: x,y
REAL(KIND=dp) :: x,y
x = Model % Nodes % x (nodenumber)
x = Model % Nodes % x (nodenumber)
y = Model % Nodes % y (nodenumber)
y = Model % Nodes % y (nodenumber)
VarOut=Bedrock(x,y)
VarOut=Bedrock(x,y)
FUNCTION smb (Model, nodenumber, VarIn) RESULT(VarOut)
USE types
IMPLICIT NONE
TYPE(Model_t) :: Model
INTEGER :: nodenumber
REAL(KIND=dp) :: VarIn
REAL(KIND=dp) :: VarOut
REAL(KIND=dp) :: Bedrock
REAL(KIND=dp) :: x,y,R2
REAL(KIND=dp),parameter :: a0=1.0/0.890, Ra=600._dp
x Model % Nodes % x (nodenumber)
y = Model % Nodes % y (nodenumber)
R2=(1750.-x)***2. +y***2.
VarOut=0._dp
IF (abs(Ra*Ra-R2).GT.0.) THEN
VarOut=a0
VarOut=VarOut*abs(Ra*Ra-R2)/(Ra*Ra-R2)
VarOut=VarOut*Sqrt(abs(Ra*Ra-R2))/Ra
END IF

```

END FUNCTION smb
From Le Meur et al., 2004

\section*{Make the mesh}

We use a grd input file to make a rectangular mesh of size [1000,4000] x [-1000,1000] of \(75 \times 50\) rectangular elements



\section*{Run the simulation}

To compile the user function (Makefile):
> make

Run the simulation:
> ElmerSolver glacier3d_SSA.sif
ssavelocity Magnitude



\section*{Play around...}

\section*{Some ideas ...}
\(\checkmark\) change the basal friction coefficient, change the form of the friction law
\(\checkmark\) start a perturbation run from this steady state (SMB(t) or friction(t))
\(\checkmark\) change the bed geometry
\(\checkmark\) change the mesh to triangular unstructured mesh
\(\checkmark\) have a look in the Stokes directory to run the same problem with Stokes```


[^0]:    - (14Zb, Zs and Effective Pressure when using the Coulomb type friction law

