

Elmer/Ice adjoint inverse methods

Fabien Gillet-Chaulet (IGE, Grenoble)

Re-organisation of solvers related to adjoints inverse methods in Elmer/Ice in Spring 2020 (still in progress)

- Motivations
 - Many individual developments for SSA, Stokes, mass conservation not documented, fully versioned and implying some code redondancy.
 - I had a bit of time due to covid-situation to wrap-up long standing promises....

Documentation is online with the Elmer/ice sources:

- <u>https://github.com/ElmerCSC/elmerfem/tree/elmerice/elmerice/Solvers/Documentation</u>
- In makdown, visible on github by can generate a nice pdf
- List of old solvers and their replacement with current status available here
 - https://cloud.univ-grenoble-alpes.fr/index.php/s/AHCwsgKgjWimqdG

	Existing solvers	Replacement/Planned	Comments	Possible with
	AdjointSSA_AdjointSolver.F90		Adjoint code for the linear system resolution	Any?
		Adjoint_LinearSolver.F90	Automatic detection of Dirichlets conditions; No need to save oads in the direct solver; How to deal with periodic conditions?	
	AdjointSolver.F90			Stokes, SSA, Thickness
Cost solver that depends on the output of a direct solver; and should be run before the adjoint of linear system	AdjointSSA_CostDiscSolver.F90	Adjoint_CostDiscSolver.F90	discrete cost function evaluation at obs. points	Any?
				Stokes, SSA, Thickness
	AdjointSSA_CostContSolver.F90	Adjoint_CostContSolver.F90	Continuous cost function, computed as the integral of the squarred error.	Any?
	CostSolver_Adjoint.F90 (cost part)		Regularisation will be treated by a disctinct solver	
				Stokes, SSA, Thickness
	AdjointSSA_CostFluxDivSolver.F90	No	Cost solver based on equation for flux divergence	SSA
		AdjointStokes_CostFluxDivSolver.F90	TO DO: WRITE the equivalent for STOKES	
	AdjointSSA_CostTaubSolver.F90	No	Penalise first patial derivatises of Tau_b	SSA
		AdjointStokes_CostTaubSolver.F90	TO DO: submit Stokes equivalent	
	AdjointSSA CostRegSolver EQ0			NA
Reg. Solver that depends only on the optimised variable	CostSolver_Adjoint.F90 (reg. Part)	Adjoint_CostRegSolver.F90	Regularisation based on a priori value or penalisation of 1rts spatial derivaties	NH .
Model specific solvers	AdjointSSA_GradientSolver.F90	No	derivatives of parameters in the SSA solver	SSA
	AdjointSSA_SSASolver.F90	No	The direct solver that correspond to the adjoint above	SSA
	DJDBeta_Adjoint.F90	AdjointStokes_GradientBetaSolver.F90	Should we combine both solvers ? => No	
	DJDmu_Adjoint.F90	AdjointStokes_GradientViscSolver.F90	No need to make a specific solver for direct solver; we will try to stay up-to-date with Elmer legacy solvers	
		AdjointThickness_GradientSolver.F90	Adjoint of thickness solver for the mass conservation method	

Others	Optimize_m1qn3Parallel.F90	No	Update for multi-variable optimisation allow for serial optimisation See possibility for hot restart of m1qn3?	Any
	USF_CoV.F90 (User Function)	No	ibrary of user function to deal with change of variable	Any
		Adjoint_GradientValidation.F90	Compare derivative with finite difference to validate adjoint set-up.	Any

Modification done, documentation available

No modification planned => write documentation

Store non specific solvers under elmerice/Solvers/Adjoint

Store model specific solvers under elmer/ice/Solvers/AdjointModel where model will be SSA, Stokes, Thickness, ...

Store documentation in md under elmerice/Solvers/Documentation

- Nomenclature:
 - Adjoint_...: for generic solvers that are independent of the direct problem
 - Sources under elmerice/Solvers/Adjoint
 - <u>Adjoint_GradientValidation</u>
 - <u>Adjoint_LinearSolver</u>
 - <u>Adjoint_CostDiscSolver</u>
 - <u>Adjoint_CostContSolver</u>
 - <u>Adjoint_CostRegSolver</u>
 - Adjoint[ModelName]_: for solvers specific to a direct solver (Stokes, SSA, ...)
 - Sources under elmerice/Solvers/Adjoint[ModelName]
 - <u>AdjointSSA_SSASolver</u>
 - <u>AdjointSSA_GradientSolver</u>
 - <u>AdjointSSA_CostFluxDivSolver</u>
 - <u>AdjointSSA_CostTaubSolver</u>

- Fully documented under elmerice/Solvers/Documentation
 - Please contribute to improve this documentation and report/correct errors, mistakes, inaccuracies...
- SSA examples updated from Elmer/Ice Oslo 2016 under elmerice/examples/SSA_Inverse_Methods
 - Inversion of friction coefficient Mac Ayeal synthetic test case
 - Inversion of ice viscosity for the Ronne-Filchner ice shelf
- Validation/usage examples:
 - elmerice/examples/Adjoint_CostRegSolver/
- What's new?
 - In many solvers some keyword have been updated to be more meaningfull with different direct solvers
 - Solvers that required to have a dumy variable to create required structured or didn't need bandwith optimisation have this hardcoded; so no need to declare this anymore.
 - => see the doc and test cases to update your steups.
- Optimize_m1qn3Parallel:
 - Works in serial
 - Can take a variable with more than 1 dof for the optimisation => e.g. joined inversion of friction and viscosity

- Adjoint_LinearSolver (replcament for AdjointSolver and AdjointSSA_AdjointSolver)
 - Compute the adjoint variable
 - Adjoint code for linear system solution and Dirichlet conditions
 - => code more consistent with direct implementation and automatic detection of Dirichlet conditions=> no need to set Dirichlet conditions for the adjoint variable anymore
- Adjoint_CostDiscSolver:
 - Compute the cost function as a discrete sum of the error at the data location
 - => do not need to interpolate data on the mesh; better if there is too much missing values in the data set.
 - Has to find in wich element the data is to interpolate model results at the exact data location
 - Can be used with SSA; Stokes
 - Efficient Elmer built-in scheme in 2D; but slow in 3D; Data can be pre-processed in 2D if working with an extruded footprint
- AdjointSSA_CostTaubSolver:
 - Alternative regularisation; Penalise first derivatives of basal drag instead of the friction coefficient itself.
 - Will provide the same for Stokes

- To do list:
 - Put a warning in deprecated solvers and remove these solvers in the next release
 - Document solvers for Stokes and provide test cases (similar to SSA; MacAyeal and Ronne-Filchner)
 - Commit solvers and provide test cases for the mass conservation method (adjoint of thickness solver)
 - Update »automatic tests » to check consistency
 - Update Elmer/Ice sheet (Greenland) .sif file to comply with new solvers
 - Provide .sif file for joined inversion of friction and viscosity in Ronne-Filcher drainage bassin (SSA B. Urruty)
 - Finalize Stokes configuration file for Greenland (with the help of T. Zwinger, R. Geve)
 - Antarctic ice sheet SSA (B. Urruty) and Stokes (R. Gladstone)
- Some thoughts:
 - How to share results (espacially at the scale of the ice sheets), as
 - often no need to re-do the initialisation if we are using the same data sets
 - Havin an ensemble of results could be interesting to asses the uncertainties in the re-constructions
 - Could be used an Boundary or initial conditions for other applications
 - Please help to improve the documentation, report failing cases etc... and contribute to the implement new set-up.
- Inverse methods in Elmer/Ice:
 - We will be more or less set with the codes now
 - Still a lot of science to do on the regularisation (or Background); don't take what we do now (Tikhonov regularisation) as the best solution; more thoughts to have on this.... Especially when inverting several parameters
 - Moving to 4D-Var would be very complicated without using an automatic differentiation tools....
 - Will try to set-up ensemble DA in real cases (1 psot-Doc and 1 PhD to strart this automn)