

First Elmer/lce course

14-15 February 2008 - Updated 2013

Thomas ZWINGER ${ }^{(1)}$ and Olivier GAGLIARDINI ${ }^{(2)}$

Application to ISMIP HOM ${ }^{(3)}$ tests B and D Step by step !

(1) CSC-Scientific Computing Ltd., Espoo - Finland
(2) LGGE - Grenoble - France
(3) http://homepages.ulb.ac.be/~fpattyn/ismip/

Outline

Step 0 Start from a very simple test case. What are we solving? (Glen' s law, ...)
Step 1 Move to test ISMIP-HOM B020 (mesh, periodic BC)
Step 2 Add SaveData solver to get output on the BC (SaveLine) Add SaveData solver to get cpu and volume of the domain (SaveScalars) Add ComputeDevStress solver to get the stress field Add ResultOutput solver to export in vtu format

Step 3 Move to test ISMIP-HOM D020 (sliding law from user function or MATC)
Step 4 Restart from Step 2: Move to Prognostic ISMIP B020.

- Move from a steady to a transient simulation
- Free surface solver

Step 5 Move to Prognostic ISMIP D020.

Step 0

Create a My_ISMIP_Appli directory
Copy the directory Step0 in My_ISMIP_Appli

- Make the mesh:> ElmerGrid 12 square.grd
-Run the test:> ElmerSolver ismip_step0.sif
- Watch the results : > ElmerPost and open square\ismip_step0.ep
- What are we solving?

Stokes:
$\operatorname{div} \sigma+\rho g=0$
$u_{i, i}=0$

Navier-Stokes with convection and acceleration terms neglected:

```
Flow Model = String Stokes
```

in the Stokes solver section
O. GAGLIARDINI - April 2013 - Edmonton

Step 0 - Glen' s law and Elmer

In glaciology, you can find (at least) two definitions for Glen's law:

$$
\begin{aligned}
D_{i j}= & \frac{B}{2} \tau_{e}^{n-1} S_{i j} \quad ; \quad S_{i j}=2 B^{-1 / n} \dot{\gamma}^{(1-n) / n} D_{i j} \\
D_{i j}= & A \tau_{e}^{n-1} S_{i j} \quad ; \quad S_{i j}=A^{-1 / n} I_{D_{2}}^{(1-n) / n} D_{i j} \quad \text { ISMIP notation } \\
& \text { where } \quad I_{D_{2}}^{2}=D_{i j} D_{i j} / 2 \quad \text { and } \quad \dot{\gamma}^{2}=2 D_{i j} D_{i j}
\end{aligned}
$$

The power-law implemented in Elmer writes: $\quad S_{i j}=2 \eta_{0} \dot{\gamma}^{m-1} D_{i j}$

$$
\begin{aligned}
& \eta_{0}=B^{-1 / n}=(2 A)^{-1 / n} \\
& m=1 / n \\
& \dot{\gamma}^{2} \geq \dot{\gamma}_{c}^{2}
\end{aligned}
$$

In Material Section:

```
Viscosity Model = String "power law"
Viscosity = Real \etao
Viscosity Exponent = Real m
Critical Shear Rate = Real }\mp@subsup{\dot{\gamma}}{c}{
```

\square

Step 0 - Sketch of a Steady simulation

$$
\text { Geometry + Mesh } \longrightarrow \text { Degrees of freedom }
$$

$$
\epsilon_{L}<\epsilon_{N L}<\epsilon_{C}
$$

Step 0 - Numerical methods

In the NS Solver Section:
(see Chapters 3 and 4 of Elmer Solver Manual)

- Solution for the Linear System:

```
Linear System Solver = Direct
Linear System Direct Method = umfpack
```

- Non-Linear System :

```
    Nonlinear System Max Iterations = 100
Picard Nonlinear System Convergence Tolerance = 1.0e-5 = \epsilon NNL
    Nonlinear System Newton After Iterations = 5
Nonlinear System Newton After Tolerance = 1.0e-02
Nonlinear System Relaxation Factor = 1.00
```

- Coupled problem (not needed here in fact...):

```
Steady State Convergence Tolerance = Real 1.0e-3 = \epsilon}
```

- Stabilization of the Stokes equations:

```
Stabilization Method = String Bubbles (otheroptions:Stabilized, P2P1)
```


Step 0 - What are we solving?

$p(0,1)=0 \begin{aligned} & y \uparrow \begin{array}{l} \text { Boundary 3: } \\ - \text { Stress free } \end{array} \end{aligned}$		Boundary 2: - Stress free
Boundary 4$u(0, y)=$	$\downarrow g=\left[\begin{array}{c} 0 \\ -1 \end{array}\right]$$\rho=1$	
	$\eta_{0}=1$	
	$m=1 / 3$	
Mesh: 20×20 Q4 elements	$\dot{\gamma}_{c}=10^{-10}$	
	Boundary $1 v(x, 0)=0$	${ }_{x}$

Step 1 - Move to ISMIP-HOM B020

What we have to solve :

Stress free $\quad z_{s}(x)=-x \tan \left(0.5^{\circ}\right)$

Periodic BC

$$
\begin{aligned}
& A=10^{-16} \mathrm{~Pa}^{-3} \mathrm{a}^{-1} \\
& \rho=910 \mathrm{~kg} / \mathrm{m}^{3} \\
& \text { Periodic BC } \\
& z_{b}(x)=z_{s}(x)-1000+500 \sin \left(\frac{2 \pi}{L} x\right)
\end{aligned}
$$

$L=20 \times 10^{3} \mathrm{~m}$

Step 1 - Changes from Step0

- New directory, new names !
e.g.: square.grd -> rectangle.grd
- Make the mesh : use of the StructuredMeshMapper solver
- Right values for the different constants (which system of Units ?)
- Add the periodic boundary conditions

Step 1 - StructuredMeshMapper

- Start from rectangular mesh Lx 1m and use the solver StructuredMeshMapper to produce the ISMIP B geometry

- Add the solver StructuredMeshMapper

```
Solver 1
    Equation = "MapCoordinate"
    Procedure = "StructuredMeshMapper" "StructuredMeshMapper"
    Active Coordinate = Integer 2
    Mesh Velocity Variable = String "dSdt" (Notreally needed in steady)
    Mesh Update Variable = String "dS"
    Mesh Velocity First Zero = Logical True
    End
```


Step 1 - StructuredMeshMapper

Specify in the Boundary conditions 1 and 3 what is the mapping for the Bottom and Top surfaces, respectively:

```
$Slope = 0.5 * pi / 180.0
$L = 20000.0
! Bedrock
Boundary Condition 1
    Target Boundaries = 1
    Velocity 1 = Real 0.0e0
    Velocity 2 = Real 0.0e0
    Bottom Surface = Variable Coordinate 1
        Real MATC "-tx*tan(Slope)-1000.0+500.0*sin(2.0*pi*tx/L)"
End
! Upper Surface
Boundary Condition 3
    Target Boundaries = 3
    Top Surface = Variable Coordinate 1
        Real MATC "-tx*tan(Slope)"
End
```


Step 1 - Elmer and Units

The choice of Units have to be coherent.
But you are free because the Stiff matrix is normalized.
For the Stokes problem, one should give values for:

- the density: $\rho \quad\left(=910 \mathrm{~kg} / \mathrm{m}^{3}\right)$
- the gravity: $g \quad\left(=9.81 \mathrm{~m} \mathrm{~s}^{-2}\right)$
- the viscosity: $\eta_{0} \quad\left(\mathrm{~Pa} \mathrm{~s}^{1 / n}\right) \quad\left(1 \mathrm{~Pa}=1 \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~m}^{-1}\right)$
$\mathrm{kg}-\mathrm{m}-\mathrm{s}[\mathrm{SI}]$: velocity in m / s and timestep in secondes

$\mathrm{kg}-\mathrm{m}-\mathrm{a}$: velocity in m / a and timesteps in years

$1 a=31557600 \mathrm{~s}$
$\mathrm{MPa}-\mathrm{m}-\mathrm{a}$: velocity in m / a and Stress in MPa

(What I will use in the following)

Step 1 - Value of the ISMIP constants

For ISMIP tests A-D, the value for the constants are

- the density: $\quad \rho=910 \mathrm{~kg} / \mathrm{m}^{3}$
- the gravity: $g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$
- the fluidity: $A=10^{-16} \mathrm{~Pa}^{-3} \mathrm{a}^{-1}$

	USI kg - m - s		$\mathrm{kg}-\mathrm{m}-\mathrm{a}$		MPa - m-a	
$\mathrm{g}=$	9.81	$\mathrm{m} / \mathrm{s}^{2}$	9.7692E+15	$\mathrm{m} / \mathrm{a}^{2}$	9.7692E+15	$\mathrm{m} / \mathrm{a}^{2}$
$\rho=$	910	$\mathrm{kg} / \mathrm{m}^{3}$	910	$\mathrm{kg} / \mathrm{m}^{3}$	$9.1380 \mathrm{E}-19$	MPa m ${ }^{-2} a^{2}$
A =	3.1689E-24	$\mathrm{kg}^{-3} \mathrm{~m}^{3} \mathrm{~s}^{5}$	$1.0126 \mathrm{E}-61$	$\mathrm{kg}^{-3} \mathrm{~m}^{3} a^{5}$	100	$\mathrm{MPa}^{-3} \mathrm{a}^{-1}$
$\eta=$	5.4037E+07	$\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-5 / 3}$	1.7029E+20	$\mathrm{kg} \mathrm{m}^{-1} \mathrm{a}^{-5 / 3}$	0.1710	$\mathrm{MPa} \mathrm{a}^{1 / 3}$

$$
\begin{aligned}
& \eta_{0}=B^{-1 / n}=(2 A)^{-1 / n} \\
& m=1 / n \\
& \dot{\gamma}^{2} \geq \dot{\gamma}_{c}^{2}
\end{aligned}
$$

Step 1 - Value of the ISMIP constants

One can use MATC coding to get the correct value of the parameters

```
$yearinsec = 365.25*24*60*60
Srhoi = 900.0/(1.0e6*yearinsec^2)
Sgravity = -9.81*yearinsec^2
Sn=3.0
Seta = (2.0*100.0)^(-1.0/n)
```



```
sody Force 
    Flow BodyForce 1 = Real 0.0
    Flow BodyForce 2 = Real Sgravity
End
1111111111111111111111111111111111111111
Material 1
    Densfty = Real Srhof
    Viscosity Model = 5tring "power law"
    viscosity = Real Seta
    Viscosity Exponent = Real $1.0/n
    Critical Shear Rate = Real 1.0e-10
End
```


Step 1 - Periodic boundary conditions

Declare at the top of the sif:

```
$L = 20.0e3
```

Boundary Condition 2
Target Boundaries $=2$
Periodic $\mathrm{BC}=4$
Periodic BC Translate(2) = Real \$L 0.0
Periodic BC Velocity 1 = Logical True
Periodic BC Velocity 2 = Logical True
Periodic BC Pressure = Logical True
End
Boundary Condition 4
Target Boundaries $=4$
End

Nothing to declare for BC4!

Step 2 - Add ComputeDevStress

Objective: compute the stress field as $\int_{V} S_{i j} \Phi \mathrm{~d} V=2 \int_{V} \eta D_{i j} \Phi \mathrm{~d} V$
where $D_{i j}$ and η are calculated from the nodal velocities using the derivative of the basis functions

- Add a Solver

```
Solver 3
    Equation = Sij
    Variable = -nooutput "Sij"
    Variable DOFs = 1
    Exported Variable 1 = Stress[Sxx:1 Syy:1 Szz:1 Sxy:1]
    Exported Variable 1 DOFs = 4
    Stress Variable Name = String "Stress"
    Procedure = "ElmerIceSolvers" "ComputeDevStress"
    Flow Solver Name = String "Flow Solution"
    Linear System Solver = Direct
    Linear System Direct Method = umfpack
End
```

- Add in the material section:

```
Cauchy = Logical False
```


Step 2 - Add SaveData Solver (SaveLine)

Objective: save the variables on the top surface (ASCII matrix file)

- Add a new solver

```
Solver 4
    Exec Solver = After All
    Procedure = File "SaveData""SaveLine"
    Filename = "ismip_surface.dat"
    File Append = Logical False
End
```

- Tell in which BC you want to save the data

```
Boundary Condition 3
    Target Boundaries = 3
    Save Line = Logical True
    End
```

- Ordering of the variables: see file ismip_surface.dat.names

Step 2 - Add SaveData Solver (SaveLine)

SaveLine can also be used to save data at a 'drilling site' (a line which is not a boundary). Here, the data are saved at $x=10 \mathrm{~km}$.

- Change the solver section

Solver 4
Exec Solver = After All
Procedure = File "SaveData""SaveLine"
Filename = "ismip_drilling.dat"
Polyline Coordinates $(2,2)=$ Real $\$(0.5 * L)-1000$. ($0.5 * L$) 0.0
File Append = Logical False
End

- And don't forget to comment the Save line $=$ Logical True in BC3

Step 2 - Add SaveScalars

SaveScalars allows to save scalars and derived quantities. Here, we will save:

1/ the volume of the domain (surface),
2 / the maximum value of the absolute horizontal velocity,
3 / the flux on the 3 boundaries 2,3 and 4 .
4/ the CPU time,
5/ the CPU memory

Step 2 - Add SaveScalars

-Add a new solver

```
Solver 5
    Exec Solver = After
    Procedure = "SaveData""SaveScalars"
    Filename = "ismip_scalars.dat"
    File Append = Logical True
    Variable 1 = String "flow solution"
    Operator 1 = String "Volume"
    Variable 2 = String "Velocity 1"
    Operator 2 = String "max abs"
    Variable 3 = String "flow solution"
    Operator 3 = String "Convective flux"
    Operator 4 = String "cpu time"
    Operator 5 = String "cpu memory"
End
```

- Tell at which boundaries you want to save the flux

Flux Integrate $=$ Logical True

Step 3 - Add ResultOutput

- ResultOutput allows to export the result in vtu format and use Paraview for post-treatment

```
Solver 6
    Exec Solver = After TimeStep
    Exec Interval = 1
    Equation = "result output"
    Procedure = "ResultOutputSolve" "ResultOutputSolver"
    Output File Name = String "ismip$Step".vtu"
    Output Format = String vtu
End
```

- For all these added solvers, modify the Equation section:

Equation 1
Active Solvers(6) $=1 \begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$
End

Step 3 - Move to ISMIP-HOM D020

Changes from B020:

- geometry of domain

$$
\left\{\begin{array}{l}
z_{s}(x, y)=-x \tan \left(0.1^{\circ}\right) \\
z_{b}(x, y)=z_{s}(x, y)-1000
\end{array}\right.
$$

modify the Top Surface and Bottom Surface variables

- boundary condition at the bedrock interface

$$
\begin{cases}\tau_{n t}=\beta^{2} u_{t} \quad \text { with } \beta^{2}(x)=1000+1000 \sin \left(\frac{2 \pi}{L} x\right) \\ u_{n}=\boldsymbol{u} \cdot \boldsymbol{n}=0 & \text { in }\left[\text { Pa a } \mathrm{m}^{-1}\right]!\end{cases}
$$

Step 3 - Move to ISMIP-HOM D020

Friction law in Elmer:

$$
\begin{aligned}
& C_{i} u_{i}=\sigma_{i j} n_{j} \quad(i=1,2) \\
& \longrightarrow C_{t} u_{t}=\sigma_{n t} ; C_{n} u_{n}=\sigma_{n n}
\end{aligned}
$$

where \boldsymbol{n} is the surface normal vector

Modification of the Boundary Condition 1:

- First Solution: MATC definition of Ct

Boundary Condition 1
Target Boundaries = 1
Flow Force BC = Logical True
Normal-Tangential Velocity = Logical True
Stress condition defined in a normal-tangential coordinate system

Velocity $1=$ Real $0.0 e 0$
$\} u_{n}=0$
Slip Coefficient 2 = Variable coordinate 1
Real MATC "1.0e-3*(1.0 + sin(2.0*pi* tx / L))
$C_{t}=\ldots$
End in [MPa a m-1]!

Step 3 - Move to ISMIP-HOM D020

- Second Solution: User Function to define Ct

```
Boundary Condition 1
    Slip Coefficient 2 = Variable coordinate 1
    Real Procedure "./ISMIP_D""Sliding"
End
```

where Sliding is a User Function defined in the file ISMIP_D.f90 (see next slide)

Compilation:

```
> elmerf90 ISMIP_D.f90 -o ISMIP_D
```


Step 3 - Move to ISMIP-HOM D020

```
FUNCTION Sliding ( Model, nodenumber, x) RESULT(C)
    USE Types
IMPLICIT NONE
TYPE (Model_t) :: Model
INTEGER :: nodenumber, i
REAL (KIND=dp) :: x, C, L
LOGICAL :: FirstTime=.True.
SAVE FirstTime, L
IF (FirstTime) THEN
    FirstTime=.False.
    L = MAXVAL(Model % Nodes % x)
END IF
x = Model % Nodes % x(nodenumber)
C = 1000.0e-6_dp*(1.0_dp + SIN(2.0_dp * Pi * x/ L))
! in MPa a /m
END FUNCTION Sliding
```


Step 4 - Move to prognostic B020

Move from a Diagnostic to a prognostic simulations:

- Steady to transient
- Add the free surface solver

$$
\frac{\partial z_{s}}{\partial t}+u_{x} \frac{\partial z_{s}}{\partial x}-u_{z}=a
$$

The mesh is vertically deformed using the StructuredMeshMapper solver.

An alternative is to use the
MeshUpdate solver (see older courses)

Step 4 - Steady to transient

The simulation Section has to be modified:

```
Simulation Type = Transient
Timestepping Method = "bdf" }\longrightarrow\mathrm{ Backward Differences Formulae
BDF Order = 1
Output Intervals = 1 }\longrightarrow\mathrm{ Save in .ep file
Timestep Intervals = 200
Timestep Sizes = 1.0
Steady State Min Iterations = 1
Steady State Max Iterations = 10 \longrightarrow To control the "implicity" of the solution
                                    over one time step
                                    (see example bellow).
```


Step 4 - Sketch of a transient simulation

Geometry + Mesh \longrightarrow Degrees of freedom

$$
t=t+\mathrm{d} t
$$

$$
\epsilon_{L}<\epsilon_{N L}<\epsilon_{C}
$$

O. GAGLIARDINI - April 2013 - Edmonton

Step 4 - Free surface Solver

The free surface solver only apply to the boundary 3 (top surface)
\longrightarrow Define a 2nd body which is the boundary 3.

```
Body 2
    Equation = 2
    Body Force = 2
    Material = 1
    Initial Condition = 2
End
```

where Equation 2, Body Force 2 and Initial Condition 2 are defined for the free surface equation.

Tell in BC3 that this is the body 2:

```
Boundary Condition 3
    Target Boundaries = 3
    !!! this BC is equal to body no. 2 !!!
    Body Id = 2
```

End

Step 4 - Free surface Solver

Add the Free Surface Solver:

```
Solver 2
    Equation = "Free Surface"
    Variable = String Zs
    Variable DOFs = 1
    Exported Variable 1 = String "Zs Residual"
    Exported Variable 1 DOFs = 1
    Procedure = "FreeSurfaceSolver" "FreeSurfaceSolver"
    Before Linsolve = "EliminateDirichlet""EliminateDirichlet"
    Linear System Solver = Iterative
    Linear System Max Iterations = 1500
    Linear System Iterative Method = BiCGStab
    Linear System Preconditioning = ILUO
    Linear System Convergence Tolerance = Real 1.0e-5
    Linear System Abort Not Converged = False
    Linear System Residual Output = 1
    Steady State Convergence Tolerance = 1.0e-03
    Relaxation factor = Real 1.0
    Stabilization Method = Bubbles
    End
```

The minimum is presented here, you can add limits not to be penetrated by the free surface

Step 4 - Free surface Solver

Body Force 2:

```
Body Force 2
    Zs Accumulation Flux 1 = Real 0.0e0
    Zs Accumulation Flux 2 = Real 0.0e0
End
```

Equation 2:

```
Equation 2
    Active Solvers(1) = 2
    Flow Solution Name = String "Flow Solution"
    Convection = String Computed
End
```

Initial Condition 2: give $z_{s}(x, 0)$

```
Initial Condition 2
    Zs = Variable Coordinate 1
            Real MATC "-tx*tan(Slope)"
End
```


Step 4 - StructuredMeshMapper

- The Top Surface variable is now equals to the variable Zs

Solver 1
Equation = "MapCoordinate"
Procedure = "StructuredMeshMapper" "StructuredMeshMapper"
Active Coordinate $=$ Integer 2

Mesh Velocity Variable $=$ String "dSdt"
Mesh Update Variable $=$ String "dS »
Mesh Velocity First Zero = Logical True
Top Surface Variable $=$ String "Zs"
Dot Product Tolerance $=$ Real 1.0e-3
End

- And delete in the top surface BC the definition of Top Surface.

Step 4 - Results !

Comparison of the initial and steady surface of the prognostic run

Step 4 - better results !

Turn the mesh so that zs $=0$ (turn the gravity vector also !) Force zs to be periodic

See Step4_hori

Step 5 - Move to prognostic D020

Merge Step 3 and Step 4 and it should work!

