

Elmer/Ice Users splinter meeting 14 April 2015, EGU General Assembly, Vienna

Carlo Licciulli, Pascal Bohleber, Dietmar Wagenbach*, Olaf Eisen, Olivier Gagliardini and Martin Hoelzle

Supplementing ice core time series at a small scale Alpine glacier with a 3D full stokes ice flow model using Elmer/Ice

The Colle Gnifetti Glacier, Monte Rosa, 4450 m

- Small scale cold firn saddle
- Low net accumulation, rapid layer thinning
 - → long term ice core records possible!
- Unique potential of this site hampered by depositional noise and upstream effects

Main goals of the modeling tool:

- Evaluate potential upstream effects by calculating source trajectories of existing ice core sites
- Assist in dating the ice cores
- Calculate isochronous surfaces under the firn/ice transition line

The Colle Gnifetti Ice Flow Model

Aerial imagery from Swisstopo (http://map.geo.admin.ch)

- Main input quantities: measured density and temperature field; boundary conditions like e.g. bedrock and surface topography
- Consideration of firn rheology using the Porous Solver
- **Parameter tuning** to provide the best fit between model derived and directly measured quantities

Preliminary Model Results

Horizontal surface velocities

Preliminary Model Results

Ice particles trajectories

 The accuracy of the trajectory calculation will be improved after adjusting the model parameters using ice core derived depthdependent quantities

Outlook

- Couple the mechanical model to a thermodynamical one
- Take into account ice anisotropy
- Further parameter tuning based on ice cores derived depthdependent informations

Have a look on my poster presentation!

Wed 17:30-19:00, Y167