
Calving in Elmer/Ice

Joe Todd



Elmer/Ice Calving Models

2D Calving:

• Calving = point on line

• Manipulate original mesh (accordion)

• Simple, fast, serial

• Worse

3D Calving:

• Calving = line on surface

• Complete remeshing

• Complex, expensive, parallel

• Better



Elmer/Ice Calving Solvers

2D Calving:

• Calving.F90

• TwoMeshes.F90

2,000 lines of code

3D Calving:

• Calving3D.F90

• CalvingRemesh.F90

• ProjectCalving.F90

• CalvingGeometry.F90

• ComputeCalvingNormal.F90

• CalvingFrontAdvance3D.F90

11,000 lines of code 

Both use the 

‘crevasse depth 

calving criterion’ but 

others could be 

implemented easily.



Dependencies

Software:

• GMSH for remeshing

• NETCDF for GridDataReader

• Linux?

Data:

• Accurate bed topography

• Initial terminus position

• Velocity for inversions Basal topography produced via mass conservation.



Predicting Calving



Predicting Calving



Predicting Calving



Remeshing

Input: Calving vector defined on front

Output: Good quality mesh with post-

calving geometry & all field variables.

Method: 

1. Produces ‘post-calving’ footprint

2. Mesh it in GMSH

3. Extrude it

4. Deform it

5. Interpolate variables



Terminus Advance

Continuous process, unlike calving

FreeSurfaceSolver doesn’t work

CalvingFrontAdvance.F90 computes:

 𝑑 = 𝑢 − 𝑎⊥𝑛 𝑑𝑡

So nodes are free to move in any 

direction.



Adaptive Timestepping

Problem: Calving events trigger 

‘follow-up’ events, but timestepping 

introduces artificial delay.

Solution: If a large calving event 

occurs, change the timestep size to 

quasi-steady state (1 day => 1 second) 

and recompute velocity, stress, 

calving.



Robustness & Stability

• Unsupervised remeshing 

causes issues

• “Check NS” looks for 

suspicious velocity 

solution and 

remeshes/rewinds

• Looks for:

1. Convergence failure

2. Very high velocity

3. Large changes in 

velocity



Typical Simulation

- Compute velocity & stress (and check!)

- Advance front

- Evolve upper & lower surfaces

- Look for calving

- Remesh, interpolate & continue



Getting Help

Look at the test cases in: elmerice/Tests/Calving*

Look at the Elmer/Ice wiki –> Problems -> Calving

Read the source code! 

Get in touch – StAndrewsGlaciology.org



Questions about calving in Elmer/Ice?



Meshing, Mesh Adaptation 

& Remeshing



Meshing, Mesh Adaptation & Remeshing

- Remeshing use cases

- Existing remeshing 

capabilities

- Desired functionality

- Tools



When do we need to modify meshes?

- When errors are spatially variable 

(heterogeneous flow, changing 

boundary conditions)

- When geometry changes (calving, 

surface adjustment)

- But mesh adaptation is not a 

uniquely glaciological problem!

Glaciology Use Cases

- Surface Adjustment

- Grounding Line Dynamics

- Iceberg Calving

Glaciology typically requires:

- Mesh Anisotropy

- 3D

- Variable resolution



MeshSolve.F90

- Gradual and simple changes in geometry

- Stretches/squashes mesh

- Mesh topology remains the same (this can be useful)



Complete Remeshing





Complete Remeshing

- Ensure high quality mesh even with complex geometry changes

- Control over mesh resolution through entire simulation

But…

- Relies on external tools 

- Command line call to GMSH - bit messy

- Makes data analysis a bit trickier

- Only able to produce structured meshes



Mesh Refinement

• Error reduction scheme

• Split elements based on metric

• Computed error

• Solution gradient

• Distance from grounding line

• No geometry changes

• Can also join elements if error is low 

for computational efficiency



Modelling Ice Sheets

- Evolving surfaces

- Evolving terminus/ice shelf extents

- Evolving grounding lines

- Evolving basal slip?



Issues

- Performance bottlenecks

- Go parallel?

- Need for anisotropy

- Structured/Unstructured

- What’s the advantage of structured?

- Numerical Diffusion

- Can this be avoided/minimised?



Available Tools

GMSH – weapon of choice for most 

Elmer users?

YAMS – surface meshes only

Mmg/PaMPA

• parallel 3D remeshing

• libs with FORTRAN interface!

Elmer internal functionality:

• Mesh extrusion

• Structured mesh mapping

• Adaptive splitting



Priorities for Future Work?

- Fabien has developed solvers for mesh refinement 

using Mmg

- Are we done with YAMS?

- Joe has developed pseudo-structured remeshing

- Lots of interest in GL refinement

- Selective partial remeshing – minimise numerical 

diffusion?

- Let’s collaborate and use libraries when possible! 

- Avoid re-inventing the wheel



Parallel adaptivity

Some thoughts from Elmer project manager (Peter Råback)

What we currently use:

- Error indicator exists for a few equations (problem specific indicators)

- Adaptivity can be done either by splitting or external mesher

- Splitting is done on edges and results to mesh ratio of two and funny looking 

interfaces.

- External mesher needs an indicator for the mesh density. This was previously 

done for ElmerMesh2D and it could probably be done with some other meshers as 

well.

Unfortunately the adaptivity is never parallel in Elmer. So to go into parallel 

adaptivity some other steps should be done in parallel within ElmerSolver: 

partitioning.



Parallel adaptivity

Partitioning in ElmerSolver:

- There exists a PartitionMesh solver and six test cases InternalPartitioning*

- PartitionMesh solver is designed to be more content aware so it can make good 

decisions based on the sif

- Currently supports only some geometric routines of my own. Also supports 

hybrid methods where parts of the mesh are partitioned hierarchically with 

different methods. - Also Metis/Scotch should be implemented.

- Currently saves mesh to disk in partitioned format 

(WriteMeshToDiskPartitioned).

- Mesh distribution by a master process to subprocesses should be implemented

- When this would work as a solver the features could be merged into the library 

more closely.

When we can partition meshes inside ElmerSolver it is much easier to adapt 

further adaptive stategies. Personally, I'm little bit hesitant about the local 

partitioning schemes. It could be better to have global remeshing that would be 

implemented also as a 2D master process on one partition. 


