

Elmer/Ice advanced Workshop

30 Nov – 2 Dec 2015

Ice Rheologies

Fabien Gillet-Chaulet

LGGE - Grenoble - France

✓ The Physics

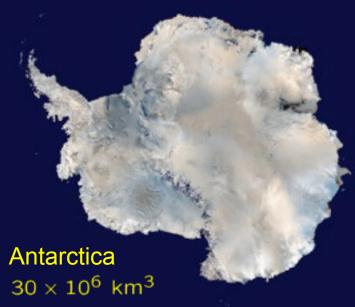
- Ice(s) on Earth
- Important internal variables

Rheological laws

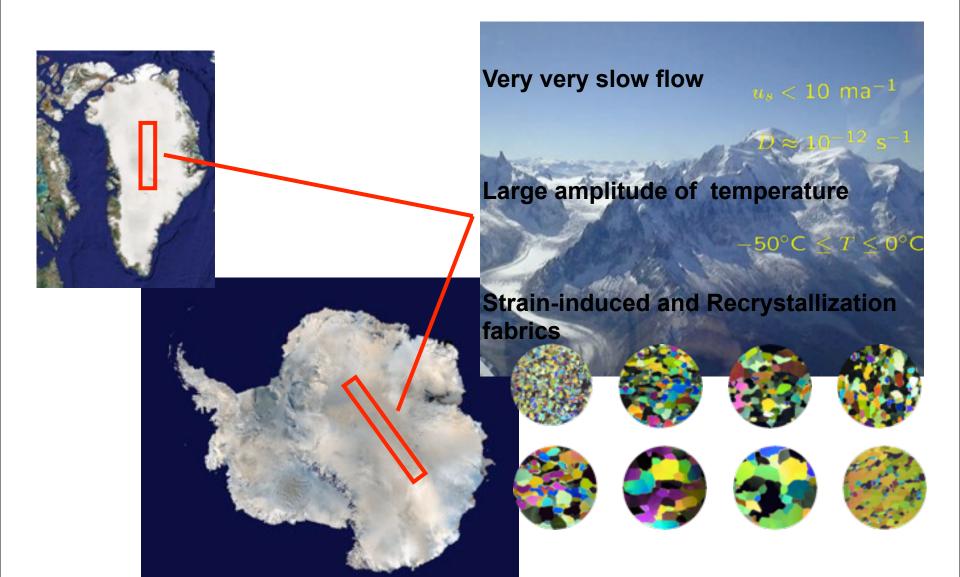
- Glen's flow law
- Anisotropic laws (GOLF and CAFFE)
- A law for the firn/snow
- Associated evolution equations (fabric, density)
- Damage

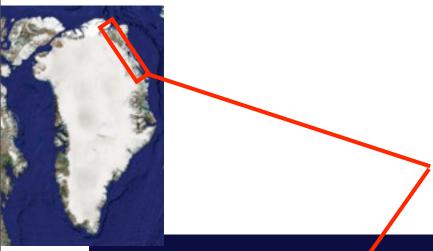
Implementation in Elmer/Ice

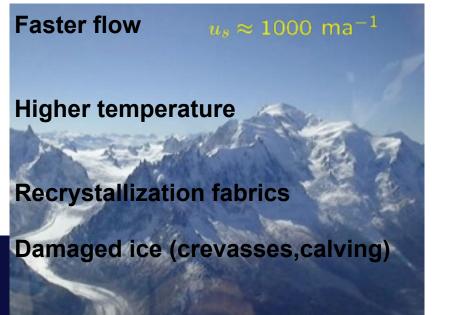
- AIFlow Solver and Fabric Solver
- Porous Solver
- User Function USF_Damage

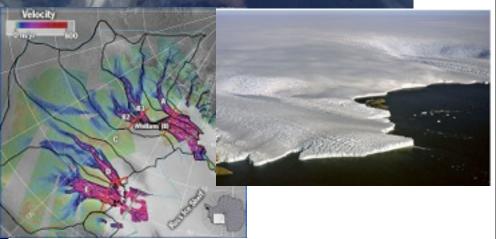


Flowing ice(s) on the Earth



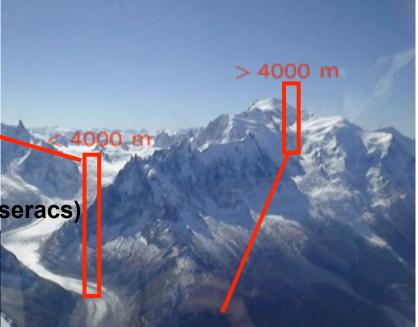






Margin of ice-sheets

Glaciers


Faster flow $u_s \approx 100 \text{ ma}^{-1}$

Temperate ice

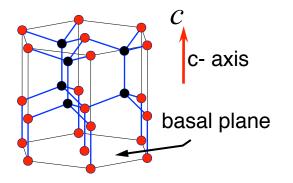
 $T = O^{o}C$ Stress-induced fabrics

Damaged ice (crevasses, seracs)

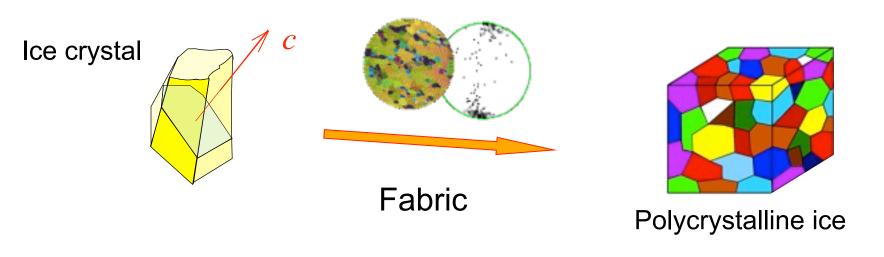
Slow flow

 $u_s \approx 10 \ {\rm ma}^{-1}$

Lower temperature


 $T < O^o C$

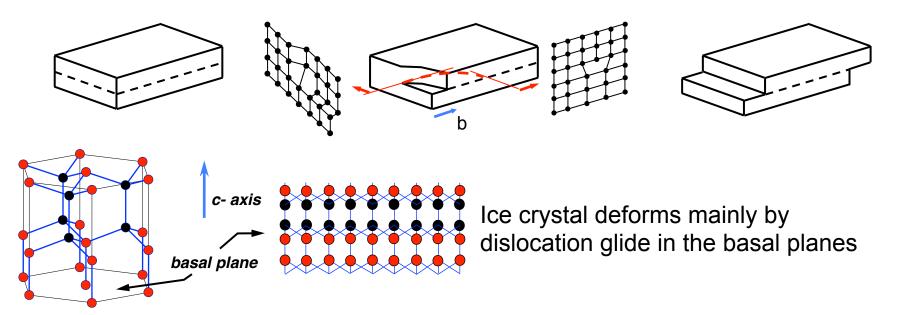
Large part composed by snow/firn



Hexagonal symmetry

One of the most anisotropic natural material

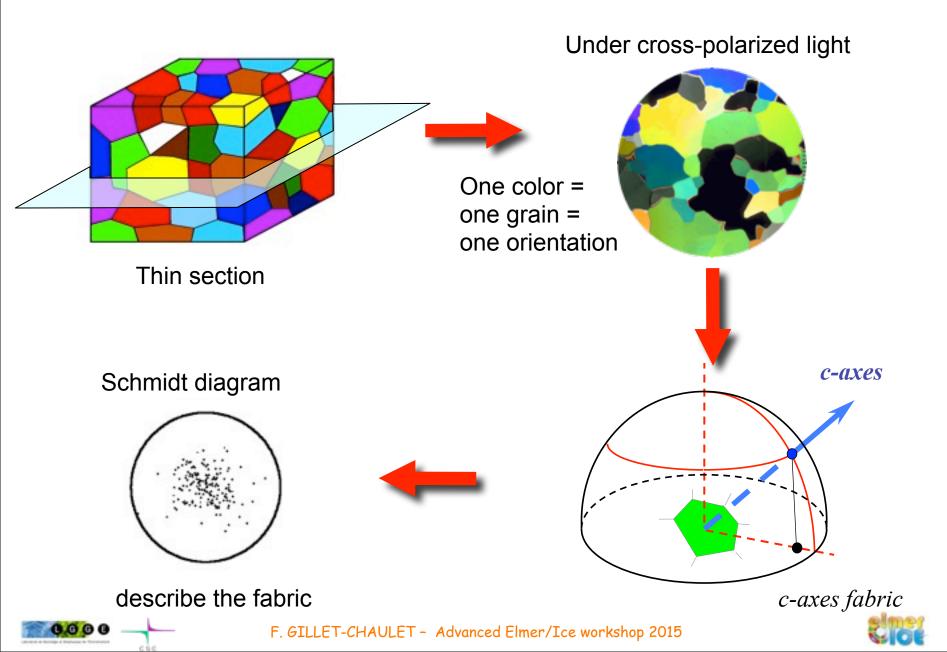
behave like a deck of cards !!


Anisotropy function of the fabric

Ice monocrystal viscoplastic behaviour

The viscoplastic deformation is due to the dislocation glide

Ice is one of the most anisotropic natural material



Shearing parallel to basal plane is almost **1000 time faster** than compression (\perp ou // p. b.) or shearing in the basal plane

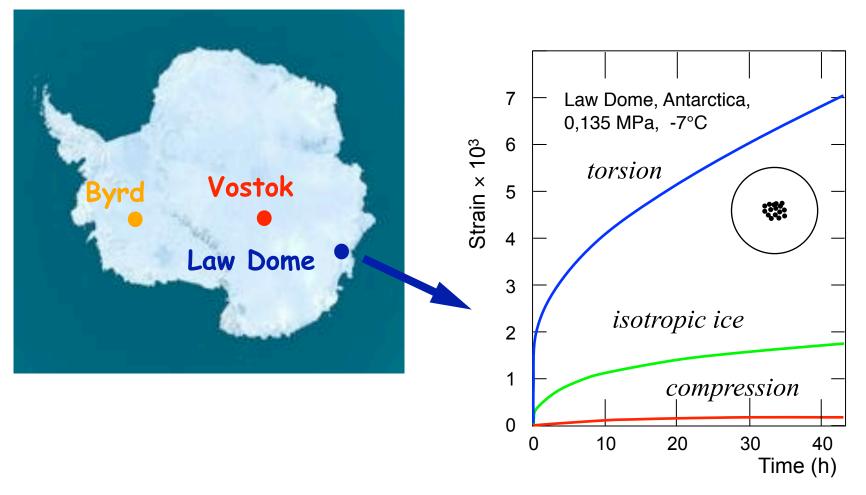
behave like a deck of cards



Fabric of polycrystalline ice

Observed ice fabric patterns

Depends on the strain history undergone by the polycrystal



Compression and/or Simple shear

Tension

Single maximum fabric is about 10 time easier to shear than isotropic ice

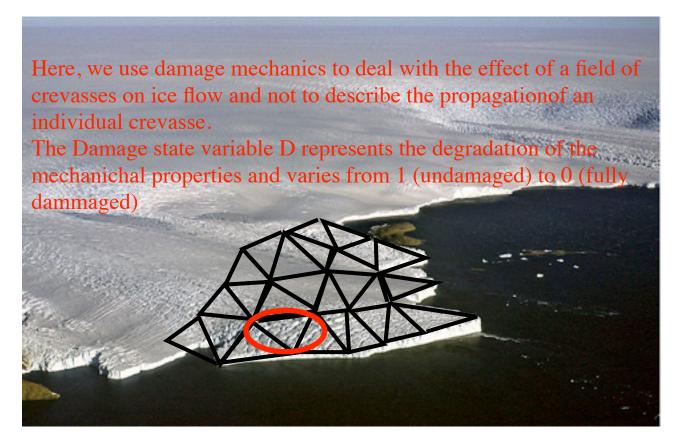
Damaged ice : a continuum mechanic approach

Objective:

• quantify the degradation of mechanical properties resulting from the nucleation of internal defects such as micro-cracks or voids

A continuum damage mechanics model:

• internal defects must be small compared to the representative volume element over which damage is considered

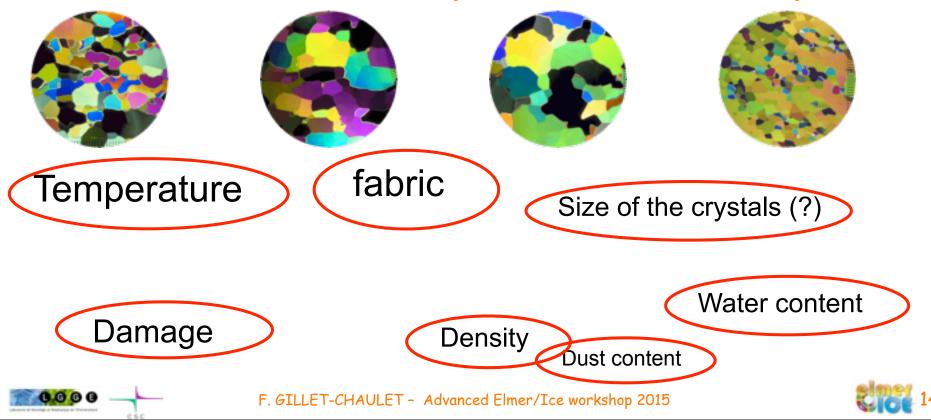

Damaged ice : a continuum mechanic approach

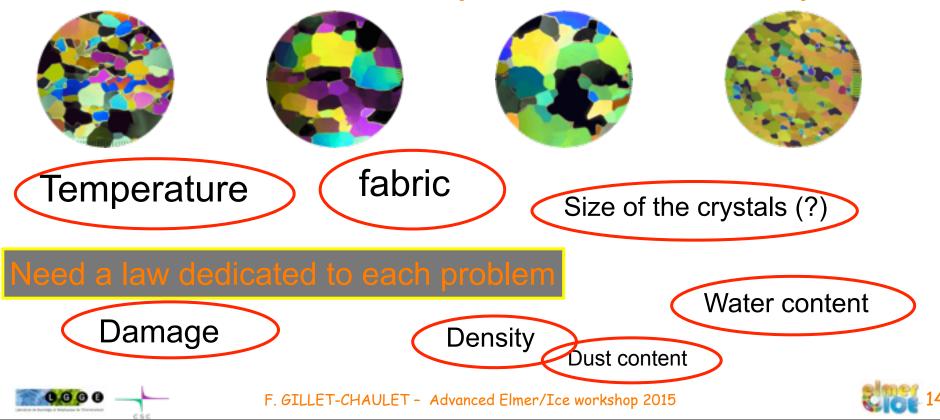
Objective:

• quantify the degradation of mechanical properties resulting from the nucleation of internal defects such as micro-cracks or voids

A continuum damage mechanics model:

• internal defects must be small compared to the representative volume element over which damage is considered





The behaviour of each piece of ice is unique !

The behaviour of each piece of ice is unique !

✓ The Physics

- Ice(s) on Earth
- Important internal variables

Rheological laws

- Glen's flow law
- Anisotropic laws (GOLF and CAFFE)
- A law for the firn/snow
- Associated evolution equations (fabric, density)
- Damage
- Implementation in Elmer/Ice
 - AIFlow Solver and Fabric Solver
 - Porous Solver
 - User Function USF_Damage

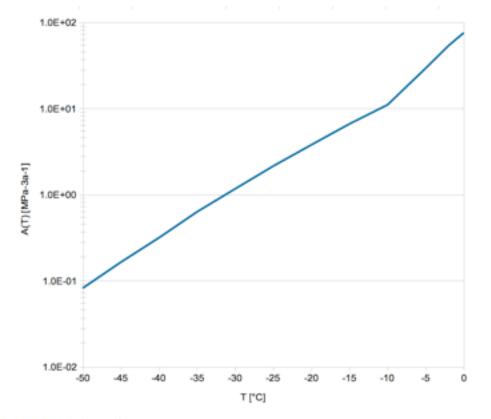
Isotropic ice : Norton-Hoff type law

$$\begin{split} D_{ij} &= A \tau_e^{n-1} S_{ij} \quad ; \quad S_{ij} = A^{-1/n} I_{D_2}^{(1-n)/n} D_{ij} \\ \text{where} \quad \begin{bmatrix} I_{D_2}^2 = D_{ij} D_{ij}/2 \\ \\ \tau_e^2 = S_{ij} S_{ij}/2 \end{bmatrix} \end{split}$$

Arrhenius law for temperature dependency

$$A(T') = A(T_0) \exp^{\frac{Q}{R} \left(\frac{1}{T_0} - \frac{1}{T'}\right)}$$

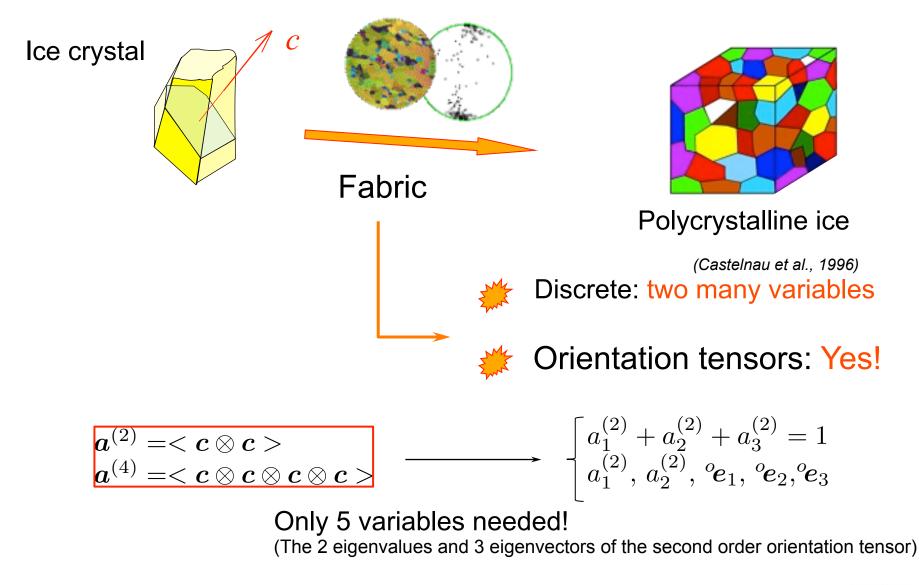
 $T' = T - T_m$, with $T_m = 273.15 + 9.8 \times 10^{-8} p_i$ (Clausius-Clapeyron) Q activation energy R = 8.314 universal gaz constant



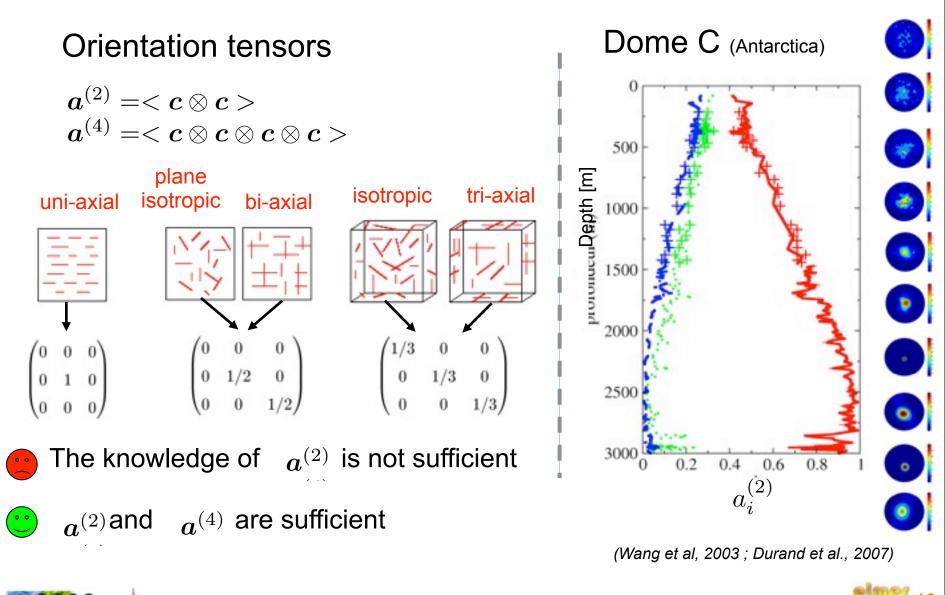
Isotropic Ice (Glen's law)

Arrhenius law for temperature dependency

$$A(T') = A(T_0) \exp^{\frac{Q}{R} \left(\frac{1}{T_0} - \frac{1}{T'}\right)}$$


T°C	A [Pa ⁻³ s ⁻¹]	A [MPa ⁻³ a ⁻¹]
0	2.40E-024	7.574E+01
-2	1.70E-024	5.365E+01
-5	9.30E-025	2.935E+01
-10	3.50E-025	1.105E+01
-15	2.10E-025	6.627E+00
-20	1.20E-025	3.787E+00
-25	6.80E-026	2.146E+00
-30	3.70E-026	1.168E+00
-35	2.00E-026	6.312E-01
-40	1.00E-026	3.156E-01
-45	5.20E-027	1.641E-01
-50	2.60E-027	8.205E-02

Recommended values by Cuffey and Patterson [2010]



Description of the fabric

Two dedicated laws in Elmer/Ice:

Name	GOLF	CAFFE	
Anisotropy	Orthotropic	Enhancement factor	
Collinear	No	Yes	
Calibration	Tabulated using a micro- macro model	From experimental results	
Easiness	dedicated solver (AIFlow)	Navier-Stokes Solver + User Function	

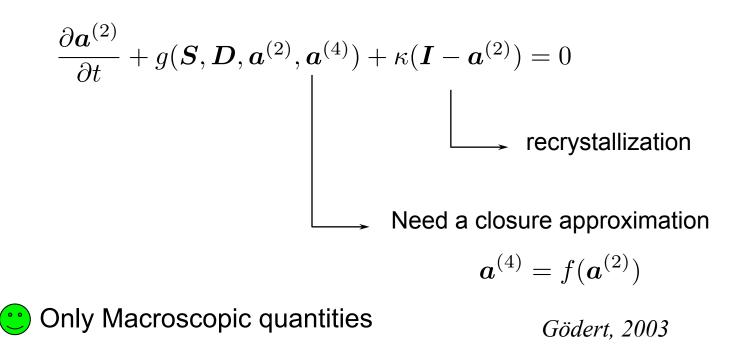
GOLF: General Orthotropic Flow Law [Gillet-Chaulet et al., 2005, 2006 ; Durand et al., 2009 ; Ma et al., 2010] **CAFFE**: Continuum-mechanical, Anisotropic Flow model based on an anisotropic Flow Enhancement factor [Placidi and Hutter, 2006 ; Seddik et al., 2008, 2009 ; Placidi et al., 2010]

GOLF:

$$\sum_{r=1}^{3} \left[\eta_r tr(\boldsymbol{M}_r \cdot \boldsymbol{D}) \boldsymbol{M}_r^D + \eta_{r+3} (\boldsymbol{D} \cdot \boldsymbol{M}_r + \boldsymbol{M}_r \cdot \boldsymbol{D})^D \right] = 2A\tau_e^{n-1}\boldsymbol{\tau}$$

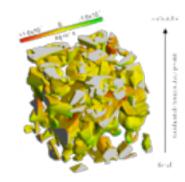
 $\eta_r = \eta_r(\boldsymbol{a}^{(2)}), 6$ relative viscosities function of the fabric $\boldsymbol{M}_r = {}^{o} \vec{e}_r \otimes {}^{o} \vec{e}_r, 3$ structure tensors from the 3 principal axes

CAFFE:

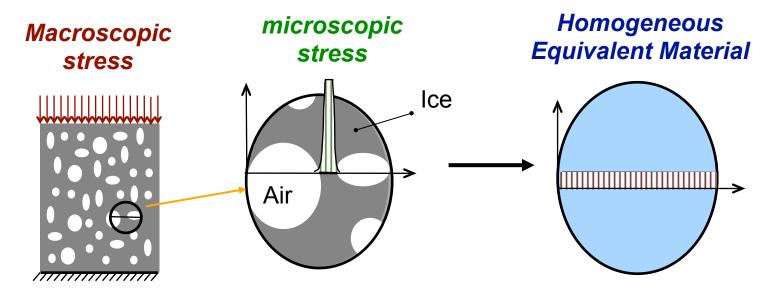

 $D = 2EA\tau_e^{n-1}\boldsymbol{\tau}$

 $E = E(a^{(2)}), 1$ scalar enhancement factor function of the fabric

For both laws, need an equation describing the fabric evolution, *i.e.* the evolution of $a^{(2)}$



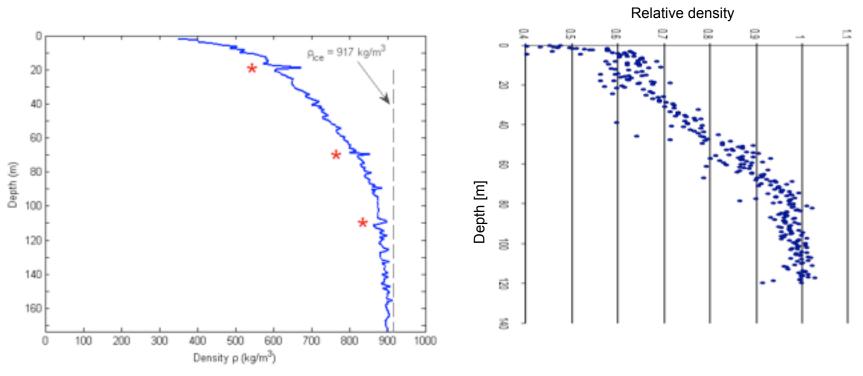
[Gödert, 2003 ; Gillet-Chaulet et al., 2006]



Rheology of snow/firn

Snow/firn = Ice + Air

- Compressible
- Viscosity function of the density

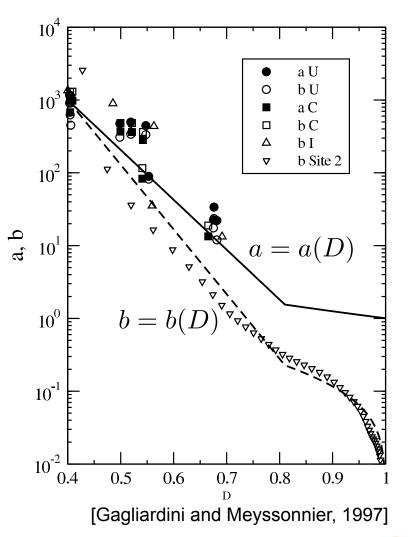


[Duva and Crow, 1994]

Observation of density

DYE-3, Greenland (From Niels Bohr Institute)

Dome du Gouter, French Alps


Stokes compressible: velocities, isotropic pressure

$$\begin{cases} \operatorname{div} \boldsymbol{\sigma} + \rho \boldsymbol{g} = 0 \\ \frac{\mathrm{d} \rho}{\mathrm{d} t} + \operatorname{div} \rho \boldsymbol{u} = 0 \end{cases}$$

Relative density: $D = \rho / \rho_i$

Snow/firn law:

$$\begin{cases} s_{ij} = \frac{2}{a} B^{-1/n} \dot{\epsilon}_D^{(1-n)/n} \dot{e}_{ij} \\ p = \frac{1}{b} B^{-1/n} \dot{\epsilon}_D^{(1-n)/n} \dot{\epsilon}_{kk} \end{cases}$$
with $\dot{e}_{ij} = \dot{\epsilon}_{ij} - \frac{\dot{\epsilon}_{kk}}{3} \delta_{ij}$

Damaged ice : a continuum mechanic approach

We define an effective deviatoric part of the Cauchy stress tensor as:

$$\widetilde{\mathbf{S}} = \frac{\mathbf{S}}{(1-D)}.$$

Strain is affected only by this effective stress:

$$\widetilde{\mathbf{S}} = (A)^{-1/n} \mathbf{I}_{\dot{\varepsilon}_2}^{(1-n)/n} \dot{\boldsymbol{\varepsilon}}. \qquad \mathbf{S} = (A)^{-1/n} (1-D) \mathbf{I}_{\dot{\varepsilon}_2}^{(1-n)/n} \dot{\boldsymbol{\varepsilon}}.$$

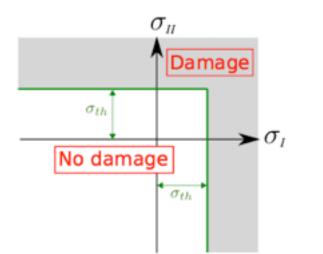
By identification with Glen's law, the enhencement factor is a function of damage:

$$E = \frac{1}{(1-D)^n}.$$

Damage is a property of the material at the mesoscale. It is therefore advected by the ice flow, and evolves over time depending on the stress field:

$$\frac{\partial D}{\partial t} + \mathbf{u}\nabla D = \begin{cases} f(\chi) & \text{si } f(\chi) > 0\\ 0 & \text{sinon} \end{cases}$$

The right-hand side represents a damage source term that can be written as a function of a damage enhencement factor and a damage criterion:


$$f(\chi) = B \cdot \chi(\tilde{\sigma}, \sigma_{th}, D)$$

Damaged ice : a continuum mechanic approach

Here, to describe crevasse opening under pure tension, we use a pure-tensile criterion, described as a function of the maximum principal Cauchy stress:

$$\chi(\sigma_{\mathrm{I}}, \sigma_{\mathrm{th}}, D) = \max\left\{0, \frac{\sigma_{\mathrm{I}}}{(1-D)} - \sigma_{\mathrm{th}}\right\}$$

✓ The Physics

- Ice(s) on Earth
- Important internal variables

Rheological laws

- Glen's flow law
- Anisotropic laws (GOLF and CAFFE)
- A law for the firn/snow
- Associated evolution equations (fabric, density)

Implementation in Elmer/Ice

- AIFlow Solver and Fabric Solver
- Porous Solver
- User Function USF_Damage

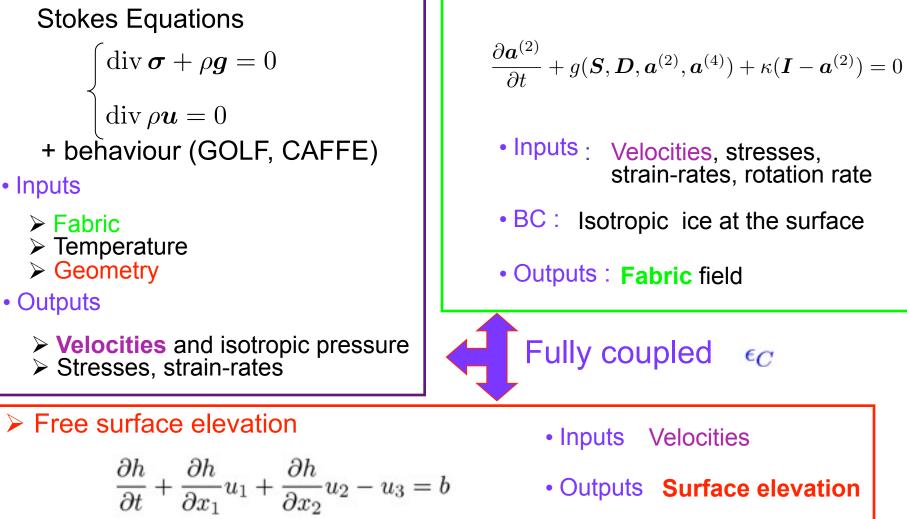
Glen's law and Elmer

$D_{ij} = A\tau_e^{n-1}S_{ij} \quad ; \quad S_{ij} = A^{-1/n}I_{D_2}^{(1-n)/n}D_{ij} \qquad A(T') = A(T_0)\exp^{\frac{Q}{R}\left(\frac{1}{T_0} - \frac{1}{T'}\right)}$

Build-in Glen's Flaw Low:

```
Material 1
! Glen's flow law
Viscosity Model = String "Glen"
Viscosity = Real -9999 ! To avoid warning output
Glen Exponent = Real 3.0
Critical Shear Rate = Real 1.0e-10
! gives a fixed value in MPa^-3a^-1
Set Arrhenius Factor = Logical True
Arrhenius Factor = Real $1.0E-16 * 1.0E18
Glen Enhancement Factor = Real 1.0
End
```

Elmer has no restriction on the units system


- Choose the most appropriate units for your silmulations
- Be consistent !!

```
Material 1
 Viscosity Model = String "Glen"
! Viscosity has to be set to a dummy value
! to avoid warning output from Elmer
  Viscosity = Real -9999
  Glen Exponent = Real 3.0
  Critical Shear Rate = Real 1.0e-10
! Rate factors (Paterson value in MPa<sup>-</sup>-3a<sup>-</sup>-1)
  Rate Factor 1 = Real 1.258e13
  Rate Factor 2 = Real 6.046e28
! these are in SI units - no problem, as long as
! the gas constant also is
  Activation Energy 1 = Real 60e3
 Activation Energy 2 = Real 139e3
  Glen Enhancement Factor = Real 1.0
! the variable taken to evaluate the Arrhenius law
! in general this should be the temperature relative
! to pressure melting point. The suggestion below plugs
! in the correct value obtained with TemperateIceSolver
  Temperature Field Variable = String "Temp Homologous"
! the temperature to switch between the
! two regimes in the flow law
  Limit Temperature = Real -10.0
! In case there is no temperature variable
  !Constant Temperature = Real -10.0
End
```


Velocities

Fabric

AIFlow Solver

 $\sum \left[\eta_r tr(\boldsymbol{M}_r \cdot \boldsymbol{D}) \boldsymbol{M}_r^D + \eta_{r+3} (\boldsymbol{D} \cdot \boldsymbol{M}_r + \boldsymbol{M}_r \cdot \boldsymbol{D})^D \right] = 2A \tau_e^{n-1} \boldsymbol{\tau}$

Add the AIFlow solver:

```
Solver 1
  Equation = AIFlow
 Variable = AIFlow
 Variable DOFs = 3
                                              ! 3 for 2D -- 4 for 3D
  Exported Variable 1 = Temperature
                                              ! Define Temperature Mandatory!!
  Exported Variable 1 DOFS = Integer 1
                                              ! Define Fabric Variable
  Exported Variable 2 = Fabric
  Exported Variable 2 DOFS = Integer 5
                                                 ! Mandatory if Isotropic=False
                                              ! Compute SR
  Exported Variable 3 = StrainRate
                                              ! 4 in 2D 6 in 3D (11,22,33,12,23,31)
  Exported Variable 3 DOFS = Integer 4
  Exported Variable 4 = DeviatoricStress !Compute Stresses
                                              ! 4 in 2D 6 in 3D (11,22,33,12,23,31)
  Exported Variable 4 DOFS = Integer 4
  Exported Variable 4 = Spin
                                              ! Compute Spin
                                              ! 1 in 2D 3 in 3D (12,23,31)
  Exported Variable 4 DOFS = Integer 1
  Procedure = "ElmerIceSolvers" "AIFlowSolver nlS2"
  !Procedure = "ElmerIceSolvers" "AIFlowSolver nlD2"
End
```


AIFlow Solver

າ

$$\sum_{r=1}^{3} \left[\eta_r tr(\boldsymbol{M}_r \cdot \boldsymbol{D}) \boldsymbol{M}_r^D + \eta_{r+3} (\boldsymbol{D} \cdot \boldsymbol{M}_r + \boldsymbol{M}_r \cdot \boldsymbol{D})^D \right] = 2A \tau_e^{n-1} \boldsymbol{\tau}$$

In the Body Force section:

AIFlow Force 2 = Real -0.00899 !body force, i.e. gravity * density

In the Material section:

```
Powerlaw Exponent = Real 3.0

Min Second Invariant = Real 1.0e-10

Reference Temperature = Real -10.0

Fluidity Parameter = Real 20.

Limit Temperature = Real -5.0

Activation Energy 1 = Real 7.8e04

Activation Energy 2 = Real 7.8e04

Min value for the second invariant of strain-rates

! TO (Celsius)!

! Bn(T0) = 2 x A(T0)

! TL (Celsius)!

! Joule/mol for T<TL

! Joule/mol for T>TL
```

Viscosity File = FILE "040010010.Va" **!Contains the tabulated relative viscosities** Isotropic = Logical False **! If True, no need of Fabric variable**

In the Initial Condition section:

_			_		
Fabric	1	=	Real	0.3333333333333333	!a2_11
Fabric	2	=	Real	0.333333333333333333	!a2_22
Fabric	3	=	Real	0.	!a2_12
Fabric	4	=	Real	0.	!a2_23
Fabric	5	=	Real	0.	!a2_13
AIFlow	1	=	Real	0.0	! u_1
AIFlow	2	=	Real	0.0	! u_2
AIFlow	3	=	Real	0.0	! p for 2D u_3 for 3D
AIFlow	4	=	Real	0.0	! only for 3D = p

AIFlow Solver

 $\sum \left[\eta_r tr(\boldsymbol{M}_r \cdot \boldsymbol{D}) \boldsymbol{M}_r^D + \eta_{r+3} (\boldsymbol{D} \cdot \boldsymbol{M}_r + \boldsymbol{M}_r \cdot \boldsymbol{D})^D \right] = 2A\tau_e^{n-1}\boldsymbol{\tau}$

In Boundary Condition section:

```
Dirichlet condition for velocity:
AIFlow 1 = Real 0.
AIFlow 2 = Real 0.
```

Neumann condition for AIFlow:

```
Normal force = Real 0.!aForce 1 = Real 0.!strForce 2 = Real 0.!strForce 3 = Real 0.!strAIFlow Slip Coeff 1 = Real 0.1!Sl
```

! a pressure along the normal of the surface
! stress along x (Sxn, with n the surface normal)
! stress along y (Syn)
! stress along z (Szn)
! Slip coefficient in direction 1

Normal-Tangential boundary condition (for Dirichlet and Neumann): Normal-Tangential AIFlow = Logical True


CAFFE User Function

 $D = 2EA\tau_e^{n-1}\boldsymbol{\tau}$ $E = E(\boldsymbol{a}^{(2)}), 1 \text{ scalar enhancement factor function of the fabric}$

In Material Section:

```
Viscosity Model = String "power law"
Viscosity Exponent = Real MATC "1.0/3.0"
Viscosity = Variable Temp
Real Procedure "./CaffeFlow" "caffeGetViscosity"
Activation Energies (2) = Real 6.0E04 1.39E05
Arrhenius Factors (2) = Real 3.985E-13 1.916E03
Enhancement Factor = Real 1.0
Limit Temperature = Real 1.0
Limit Temperature = Real -10.0 ! switching between the two values
Temp Upper Limit = Variable Pressure
Real Procedure "IceFlowProperties" "getPressureMeltingPoint"
Anisotropic Enhancement factor = Real 10.0
Critical Enhancement factor = Real 0.0001
```

Contact: Hakime Seddik (hakime@pop.lowtem.hokudai.ac.jp)

Fabric Solver

$$\frac{\partial \boldsymbol{a}^{(2)}}{\partial t} + g(\boldsymbol{S}, \boldsymbol{D}, \boldsymbol{a}^{(2)}, \boldsymbol{a}^{(4)}) + \kappa(\boldsymbol{I} - \boldsymbol{a}^{(2)}) = 0$$

Add the Fabric solver:

```
Solver 2

Equation = Fabric

Variable = -nooutput Compfab ! dumy variable (Fabric variable exported from AIFlow)

Variable DOFs = 1 ! FabricSolver compute each variable independently, Picard Type iterations

Procedure = "ElmerIceSolvers" "FabricSolver"

Discontinuous Galerkin = Logical True

End

In the Material section:
```

Interaction Parameter = Real 0.	! 0 => Fabric Evolution function of Strain-rates
	! 1=> Fabric Evolution function of dev stresses
	! If not defined set to the default value given in Viscosity File
Diffusion Parameter = Real 0.	! Diffusion term. By default set to 0 if not defined

In the Boundary Condition section:

Only Dirichlet BC for Fabric (required for inflow boundary condition, no condition for outflow)

!a2_11	
!a2_22	
!a2_12	Here, isotropic fabric (as for the upper surface)
!a2_23	
!a2_13	
	!a2_22 !a2_12 !a2_23

Anisotropy in Elmer/Ice references

Sun, B., Moore, J. C., Zwinger, T., Zhao, L., Steinhage, D., Tang, X., Zhang, D., Cui, X., and Martín, C., 2014. *How old is the ice beneath Dome A, Antarctica?*, The Cryosphere, 8, 1121-1128, doi:10.5194/tc-8-1121-2014.

Zwinger, T., M. Schäfer, C. Martín, and J.C. Moore, 2014. *Influence of anisotropy on velocity and age distribution at Scharffenbergbotnen blue ice area*, The Cryosphere, **8**, 607-621, doi:<u>10.5194/tc-8-607-2014</u>.

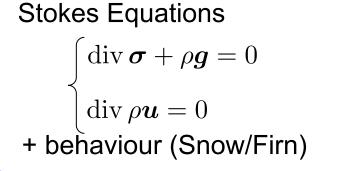
Martín, C., G.H. Gudmundsson and E.C. King 2014. *Modelling of Kealey Ice Rise, Antarctica, reveals stable ice-flow conditions in East Ellsworth Land over millennia*, J. Glaciol., **60**, 139-146, doi:<u>10.3189/2014JoG13J089</u>

Martín, C. and G. H. Gudmundsson, 2012. *Effects of nonlinear rheology, temperature and anisotropy on the relationship between age and depth at ice divides*, *The Cryosphere*, **6**, 1221-1229, doi:<u>10.5194/tc-6</u>-1221-2012.

Seddik H., R. Greve, T. Zwinger and L. Placidi, 2011. *A full-Stokes ice flow model for the vicinity of Dome Fuji*, *Antarctica, with induced anisotropy and fabric evolution*, The Cryosphere, **5**, 495-508, doi:10.5194/tc-5-495-2011.

Gillet-Chaulet, F., R.C.A. Hindmarsh, H.F.J. Corr, E.C. King, and A. Jenkins, 2011. *In-situ quantification of ice rheology and direct measurement of the Raymond Effect at Summit, Greenland using a phase-sensitive radar*, Geophys. Res. Lett., **38**, L24503, doi: 10.1029/2011GL049843

Ma Y., O. Gagliardini, C. Ritz, F. Gillet-Chaulet, G. Durand and M. Montagnat, 2010. *Enhancement factors for grounded ice and ice shelves inferred from an anisotropic ice-flow model*, J. Glaciol., **56**(199), 805-812.


Durand G., F. Gillet-Chaulet, A. Svensson, O. Gagliardini, S. Kipfstuhl, J. Meyssonnier, F. Parrenin, P. Duval and D. Dahl-Jensen, 2007. *Change of the ice rheology with climatic transitions – implication on ice flow modelling and dating of the EPICA Dome C core*, Clim. Past., 3, 155-167

Gillet-Chaulet F., O. Gagliardini, J. Meyssonnier, T. Zwinger, J. Ruokolainen, 2006. *Flow-induced anisotropy in polar ice and related ice-sheet flow modelling*, J. Non-Newtonian Fluid Mech. **134**, p. 33-43

O. GAGLIARDINI - SVALI Elmer/Ice course 2011

Velocities

Inputs

- Density
- Temperature
- Geometry

Outputs

Velocities and isotropic pressure
 Stresses, strain-rates

Free surface elevation

$$\frac{\partial h}{\partial t} + \frac{\partial h}{\partial x_1}u_1 + \frac{\partial h}{\partial x_2}u_2 - u_3 = b$$

Density

$$\frac{\mathrm{d}\,\rho}{\mathrm{d}\,t} + \mathrm{div}\,\rho\boldsymbol{u} = 0$$

- Inputs : Velocities, stresses, strain-rates, rotation rate
- BC : snow density at the upper surface
- Outputs : Density field

Fully coupled

- Inputs Velocities
- Outputs Surface elevation

 ϵ_C

Porous Solver

```
! this is the compressible Stokes solver
/_____
Solver 1
 Equation = String "PorousFlow"
 Procedure = "ElmerIceSolvers" "PorousSolver"
 Variable = "Porous"
 Variable DOFs = 4 ! 4 in 3D (u,v,w,p) ; 3 in 2D (u,v,p)
 Optimize Bandwidth = False
! Use p elements
! Element = "p:1 b:4"
! Stablization Method = String pBubbles
 ! Exported Variable 1 = String "Relative Density"
 ! Exported variable 1 DOFs = Integer 1
! switch that in for post-processing issues only
  Exported Variable 2 = String "StrainRate"
  Exported variable 2 DOFs = Integer 6 ! 4 in 2D, 6 in 3D
  Exported Variable 3 = String "DeviatoricStress"
  Exported variable 3 DOFs = Integer 6 ! 4 in 2D, 6 in 3D
  Exported Variable 4 = String "Spin"
  Exported variable 4 DOFs = Integer 3 ! 1 in 2D, 3 in 3D
 Linear System Solver = 'Direct'
! Only Picard linearization available for this solver
 Nonlinear System Convergence Tolerance = 1.0E-05
 Nonlinear System Max Iterations = 50
 Steady State Convergence Tolerance = 1.0E-03
End
```

```
! Gravity force
Body Force 1
  Porous Force 1 = Real 0.0E00
  Porous Force 2 = Real 0.0E00
  Porous Force 3 = Real $gravity*rhoi
End
```

```
Material 1
Powerlaw Exponent = Real $n
Min Second Invariant = Real 1.0E-10
Fluidity Parameter = Real $B ! MPa^{-3}a^{-1}
! Density as a function of relative density
Density = Variable Relative Density
Real MATC "tx*rhoi"
```

```
End
```

```
! Neumann type boundary condition
Boundary Condition 1
Force 3 = Real -0.01
End
! or
Boundary Condition 1
Normal Force = Real -0.01
End
! Dirichlet / Newton Boundary condition
! here: zero normal velocity and sliding
Boundary Condition 2
Target Boundaries = 2
Normal-tangential Porous = True
```

```
Porous 1 = Real 0.0
Porous Slip Coeff 2 = Real 0.1
Porous Slip Coeff 3 = Real 0.1
End
```


Density Solver

```
\frac{\mathrm{d}\,\rho}{\mathrm{d}\,t} + \mathrm{div}\,\rho\boldsymbol{u} = 0
```

This is a generic Advection-Reaction equation => Use the Elmer AdvectionReaction Solver

```
Solver 8
Equation = "AdvReact"
Exec Solver = "After Timestep"
Procedure = File "AdvectionReaction" "AdvectionReactionSolver"
! this is the DG variable, which is not part of the output
Variable = -nooutput "DGdens"
! this tells that the solver is run on DG mesh
Discontinuous Galerkin = Logical True
! the solver can account for upper and lower limits of the variable
! imposed by formulation of an variational inequality (VI)
! next line switches the VI to be accounted for
Limit Solution = Logical True
```

Linear System Solver = Iterative Linear System Iterative Method = BiCGStab Linear System Max Iterations = 1000 Linear System Preconditioning = ILU1 Linear System Convergence Tolerance = 1.0e-06 ! Variational inequality makes it a non-linear problem Nonlinear System Max Iterations = 40 Nonlinear System Min Iterations = 2 Nonlinear System Convergence Tolerance = 1.0e-04

```
! This is the variable that is used to interpolate
! the DG solution to the regular FEM mesh in order
! to get a correct output
Exported Variable 1 = Relative Density
Exported Variable 1 DOFS = 1
End
```

```
Body Force 1
```

```
...
DGDens Source = Real 0.0
End
```

Material 1

. .

```
! Relative density must stay < 1
DGDens Upper Limit = Real 1.0</pre>
```

! a minimum relative density is recommended for the Porous solver DGDens Lower Limit = Real 0.3

```
!Reaction rate is equal to zero
DGDens Gamma = Real 0.0
End
```

```
Initial Condition 1
...
DGDens = Real 0.4
End
```

! only Dirichlet BC can be set ! the solver automatically uses this ! condition only on inflow boundaries ! outflow boundaries are ignored Boundary Condition 2 Name = "surf" Target Boundaries = 2 Body ID = 2 ... ! relative density on the upper surface DGDens = Real 0.4 End

Porous solver in Elmer/Ice references

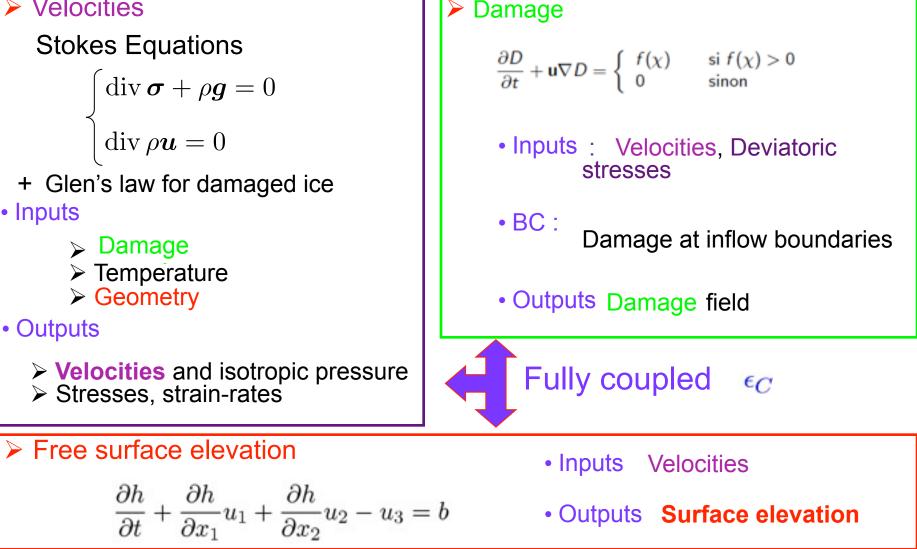
The snow/firn rheological law is from:

Gagliardini O. and J. Meyssonnier, 1997. Flow simulation of a firn covered cold glacier. Annals of Glaciol., 24, p. 242-248.

Its implementation within Elmer/Ice and an application are presented in this reference:

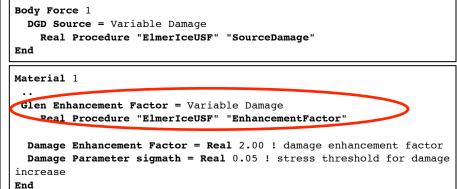
Zwinger T., R. Greve, O. Gagliardini, T. Shiraiwa and M. Lyly, 2007. A full Stokes-flow thermo-mechanical model for firn and ice applied to the Gorshkov crater glacier, Kamchatka. Annals of Glaciol., 45, p. 29-37.

Applications:


Gilbert A., C. Vincent, O. Gagliardini, J. Krug and E. Berthier, 2015. Assessment of thermal change in cold avalanching glaciers in relation to climate warming, Geophys. Res. Lett., 42, doi:<u>10.1002/2015GL064838</u>.

Gilbert, A., O. Gagliardini, C. Vincent, and P. Wagnon, 2014. *A 3-D thermal regime model suitable for cold accumulation zones of polythermal mountain glaciers*, J. Geophys. Res. Earth Surf., **119**, doi:<u>10.1002/2014JF003199</u>

Damage: related equations


Damage Solver

$$\frac{\partial D}{\partial t} + \mathbf{u}\nabla D = \begin{cases} f(\chi) & \text{si } f(\chi) > 0\\ 0 & \text{sinon} \end{cases}$$

$$f(\chi) = B \cdot \chi(\tilde{\sigma}, \sigma_{th}, D)$$

This is a generic Advection-Reaction equation => Use the Elmer AdvectionReaction Solver

```
Solver 3
  Equation = Sij
  Procedure = "ElmerIceSolvers" "ComputeDevStress"
[...]
  Exported Variable 1 = Stress[Sxx:1 Syy:1 Szz:1 Sxy:1 Syz:1 Sxz:1]
  Exported Variable 1 DOFs = 6
Additionnally, for output visualisation, the damage criterion Chi is saved as a variable named Chi, which !
need to be exported in a solver, such as :
  Exported Variable 2 = -dofs 1 "Chi"
[...]
End
Solver 8
  Equation = "AdvReact"
  Exec Solver = "After Timestep"
  Procedure = File "AdvectionReaction" "AdvectionReactionSolver"
  ! this is the DG variable, which is not part of the output
  Variable = -nooutput "DGdamage"
  ! this tells that the solver is run on DG mesh
  Discontinuous Galerkin = Logical True
  ! the solver can account for upper and lower limits of the variable
  ! imposed by formulation of an variational inequality (VI)
  ! next line switches the VI to be accounted for
  Limit Solution = Logical True
  ! This is the variable that is used to interpolate
  ! the DG solution to the regular FEM mesh in order
  ! to get a correct output
  Exported Variable 1 = Damage
End
```


Coupling with Stokes and Glen's flow law:

$$E = \frac{1}{\left(1 - D\right)^n}$$

Damage solver in Elmer/Ice references

Krug, J., G. Durand, O. Gagliardini and J. Weiss, 2015. *Modelling the impact of submarine frontal melting and ice mélange on glacier dynamics*, The Cryosphere, **9**, 989-1003, doi: 10.5194/tc-9-989-2015.

Krug, J., J. Weiss, O. Gagliardini and G. Durand, 2014. *Combining damage and fracture mechanics to model calving*, The Cryosphere, **8**, 2101-2117, doi:10.5194/tc-8-2101-2014.

