

Elmer/Ice User meeting Nov. 2023

Thomas Zwinger, CSC – IT Center for Science Ltd.

CSC – Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus

csc

Changes in internal extrusion

Thomas Zwinger

• Possibility to include midlayer

- For instance, if one wants to add bedrock underneath icesheet/glacier
- Starting from 2D footprint
- Declaration in Simulation section

extrushion_only.sif - emacs		
File Edit Options Buffers Tools Help		
! SIMULATION		
Simulation Coordinate System = Cartesian 3D Simulation Type = transient		
Timestepping Method = "bdf" BDF Order = 1	I	👤 Save
<pre>Timestep Intervals(1) = #Iter</pre>		∽Und
<pre>Timestep Sizes(1) = #dtIni</pre>		
Steady State Max Iterations = 1 Steady State Min Iterations = 1		λ Γ
Extruded Mesh Levels = Integer 20 Extruded BC Layers(1) = Integer 5 Preserve Baseline = Logical True Extruded Baseline Layer = Integer 2		Ē A
<pre>Post File = "\$namerun\$.vtu" Output File = "\$namerun\$.result" !Output Intervals(1) = 30 Output Intervals(1) = #OutPut max output level = 3</pre>		
End		
! BODIES !		
-: extrushion only.sif 23% 124 (Sif)		

-:--- extrushion only.sif 29% L156 (Sif)

File Edit Options Buffers Tools Help

extrushion_only.sif - emacs

- Even more layers
- Here with 3 layers (ice + sediment + bedrock)

	extrushion3bdy_only.sif - emacs			×
	File Edit Options Buffers Tools Help			
	! SIMULATION			
	<pre>Simulation Coordinate System = Cartesian 3D Simulation Type = transient</pre>	•	- 	•
	Timestepping Method = "bdf" BDF Order = 1	l	👤 Sa	ve
	<pre>Timestep Intervals(1) = #Iter</pre>			do
	Timestep Sizes(1) = #dtIni			
	Steady State Max Iterations = 1 Steady State Min Iterations = 1		یر 19	
	Extruded Mesh Levels = Integer 20 Extruded BC Layers(2) = Integer 8 10 Preserve Baseline = Logical True		Ē	
	Extruded Baseline Layer = Integer 3 Extruded Mesh Density = Variable Coordinate 1		Q	
	<pre>Post File = "\$namerun\$.vtu" Output File = "\$namerun\$.result" !Output Intervals(1) = 30 Output Intervals(1) = #OutPut max output level = 3</pre>			
	End			
1				

CSC

-:--- extrushion3bdy_only.sif 22% L135 (Sif)

7 8 2

With mesh distribution

extrushion3bdy_only.sif - emacs	
File Edit Options Buffers Tools Help	
! SIMULATION	
<pre>Simulation Coordinate System = Cartesian 3D Simulation Type = transient Timestepping Method = "bdf"</pre>	
BDF Order = 1 Timestep Intervals(1) = #Iter	Save
Timestep Sizes(1) = #dtIni Steady State Max Iterations = 1 Steady State Min Iterations = 1	ኤ 6
Extruded Mesh Levels = Integer 40 Extruded BC Layers(2) = Integer 16 20 Preserve Baseline = Logical True	Î
<pre>Extruded Baseline Layer = Integer 3 Extruded Mesh Density = Variable Coo dinate 1 Real 0.0 2.0 0.39999 0.5 0.49999 0.5 0.5 1.0 1.0 1.0 End Post File = "\$namerun\$.vtu" Output File = "\$namerun\$.result" !Output Intervals(1) = 30 Output Intervals(1) = #0utPut -: extrushion3bdy only.sif 22% L138 (Sif)</pre>	Q
Wrote /home/zwinger/Work/Glaciology/GlaDS/GlaDS_comp/extrushion3bdy_only.sif	

CSC

T. Zwinger Elmer/Ice User Meeting 23

• Baseline (BC 1-4): 3 sides and moulins as points (not visible)

• Baseline (BC 1-4): 3 side-lines and moulins as points (not visible)

CSC

• Lowest part of extrusion (bedrock, BC 5-8): 3 sides + lines of moulins

- Baseline (BC 1-4): 3 side-lines and moulins as points (not visible)
- Lowest part of extrusion (bedrock, BC 5-8): 3 sides + lines of moulins
- Middle part of extrusion (sediment, BC 9-12): 3 sides + lines of moulins

- Baseline (BC 1-4): 3 side-lines and moulins as points (not visible)
- Lowest part of extrusion (bedrock, BC 5-8): 3 sides + lines of moulins
- Middle part of extrusion (sediment, BC 9-12): 3 sides + lines of moulins
- Upper part of extrusion (ice, BC 13-16): 3 sides + lines of moulins

- Baseline (BC 1-4): 3 side-lines and moulins as points (not visible)
- Lowest part of extrusion (bedrock, BC 5-8): 3 sides + lines of moulins
- Middle part of extrusion (sediment, BC 9-12): 3 sides + lines of moulins
- Upper part of extrusion (ice, BC 13-16): 3 sides + lines of moulins
- Horizontal surfaces (BC 17-20): bottom until free surface

AMGX now included in devel branch

CSC

Thomas Zwinger

AMGX now included in devel branch

- Tested systematically <u>https://github.com/ElmerCSC/elmer-linsys</u>
- Navier problem on slightly more complex geometry
- Tests on <u>mahti.csc.fi</u> (1 node has 2x64 cores AMD Rome and 4 Nvidia Ampere A100 GPUs)
- Compared to tests on CPU-only nodes

AMGX performance

AMGX

https://developer.nvidia.com/amgx

The AmgX library offers optimized methods for massive parallelism, the flexibility to choose how the solvers are constructed, and is accessible through a simple C API that abstracts the parallelism and GPU implementation.

Using the methods and tools from the AmgX library, developers can easily create specialized solvers using AmgX core methods and rapidly deploy solution on GPU workstations, servers and clusters.

Key Features

- > Flexible configuration allows for nested solvers, smoothers, and preconditioners
- Ruge-Steuben algebraic multigrid
- > Un-smoothed aggregation algebraic multigrid
- > Krylov methods: PCG, GMRES, BiCGStab, and flexible variants
- > Smoothers: Block-Jacobi, Gauss-Seidel, incomplete LU, Polynomial, dense LU
- Scalar or coupled block systems
- MPI support
- OpenMP support
- Flexible and simple high level C API

• Anyone with an Nvidia card (also consumer) can use it

- Downloadable under https://github.com/NVIDIA/AMGX
- Test: WinkelBmPoissonAMGX
- Needs special cmake flags

```
-DWITH_AMGX:BOOL=TRUE \
-DAMGX_ROOT="${AMGX_HOME}" \
-DAMGX_INCLUDE_DIR="${AMGX_HOME}/include/;${CUDAINC}" \
-DAMGX_LIBRARY="${AMGX_HOME}/lib/libamgx.a" \
-DCUDA_LIBRARIES="-L${CUDALIB} -lcusparse -lcublas -lcusolver -lcudart_static -
lnvToolsExt -ldl -lpthread /usr/lib64/librt.so" \
-DCUDA_LIBDIR="${CUDALIB}"\
-DCUDA_INCLUDE_DIR="${CUDAINC}"\
```

AMGX ctest testcase

Elmer GPU developments

- Porting to AMD world (ROCalution instead of AMGX)
- Started looking into OpenMP GPU offloading for matrix assembly (this is hard)
- Currently issues with data transfer between main and GPU memory might go away with next gen hardware
- Final goal is that main Elmer/Ice solvers at some stage run on GPUs

Reporting unused keywords

- Ease of adding keywords in Elmer has a caveat
 - You can easily add unused keywords without realizing that they have no effect
- Typos may go unnoticed when casting
- Copy-pasting leaves history of previous sif file
- Not all keywords are futile, they just where not needed this time...

MAIN: Reporting unused list entries for sif improvement! MAIN: If you do not want these lines undefine > DEVEL_LISTUSAGE < ! Unused keywords:

Simulation	debug element
Constants	stefan boltzmann
Boundary Con	dition 2 velocity 1
Boundary Con	dition 2 velocity 2
Boundary Con	dition 2 velocity 3
Solver 2	flow model
Solver 2	linear system abort not converged
Solver 2	viscosity newton relaxation factor
Solver 2	nonlinear system consistent norm
MAIN: *** Elmer S	Solver: ALL DONE ***

21

Report unused keywords

• + "Max Output Level >= 6"

/* Have these defined only for debugging or optimization purposes */
/* #define DEVEL_LISTCOUNTER */
#define DEVEL_LISTUSAGE
/* #define DEVEL_KEYWORDMISSES */

Unused keywords:		Body Force 1	4	flow bodyforce 2
Simulation	debug element	Body Force 1	4	flow bodyforce 3
Simulation	solver input file	Boundary Condition 1		target boundaries
Simulation	timer: loadmesh real time	Boundary Condition 2	13139	bottom surface csc
Simulation	timer: meshstabparams real time	Boundary Condition 2	78836	horizvelo 1
Simulation	initialization phase	Boundary Condition 2	78836	horizvelo 2
Constants	stefan boltzmann	Boundary Condition 3	13140	top surface
Boundary Condition 1		Material 1	5	density
Boundary Condition 2	name	Material 1	4	viscosity
Boundary Condition 2	velocity 1	Material 1	4	viscosity model
Boundary Condition 2	velocity 2	Material 1	3	glen exponent
Boundary Condition 2	velocity 3	Material 1	3	critical shear rate
Material 1	name	Material 1	2	limit temperature
Solver 1	active mesh dimension	Material 1	2	rate factor 1
Solver 1	no matrix	Material 1	2	rate factor 2
Solver 2	flow model	Material 1	2	activation energy 1
Solver 2	linear system abort not converged	Material 1	2	activation energy 2
Solver 2	viscosity newton relaxation factor	Material 1	2	glen enhancement factor
Solver 2	nonlinear system consistent norm	Material 1	2	set arrhenius factor
Solver 2	active mesh dimension	Material 1	3	arrhenius factor
Solver 3	active mesh dimension	Solver 1	4	exec solver
Used keywords:		Solver 1	9	equation
Simulation	2 coordinate system	Solver 1	4	procedure
Simulation	7 simulation type	Solver 1	1	active coordinate
Simulation	1 steady state max iterations	Solver 1	1	mesh velocity variable
Simulation	1 steady state min iterations	Solver 1	1	mesh velocity first zero
Simulation	1 initialize dirichlet conditions	Solver 1	1	dot product tolerance
Simulation	1 max output level	Solver 2	16	equation
Simulation	2 extruded mesh levels	Solver 2	4	procedure
Simulation	1 extruded max coordinate	Solver 2	2	variable
Constants	2 gas constant	Solver 2	1	optimize bandwidth
Constants	1 gravity	Solver 2	8	linear system solver
Equation 1	3 active solvers	Solver 2	2	linear system iterative me
Equation 1	3 mapcoordinate	Solver 2	2	linear system max iteratio
Equation 1	6 hydro-stokes	Solver 2	3	linear system residual out
Equation 1 10.11.2023	3 resultoutput	Solver 2	2	linear system convergence
Body Force 1	4 flow bodyforce 1	Solver 2	5	linear system precondition
			2	nonlingan system may itona

HydrostaticNSVec

- Ref: Ralf Greve & Heinz Blatter: *Dynamics of Ice Sheets and Glaciers*
- Motivation

Missing piece between full 3D Stokes (IncompressibleNSVec) and 2D shell solvers
 Much smaller linear system compared to full Stokes 2x2 vs 4x4
 Pos.def. linear system - Not a saddle-point problem
 => large selection of good linear system strategies!?

• Implementation strategy

Copy-paste from IncompressibleNSVec

Use of same keywords as much as possible

Pre/post processing automated via internal use of structured mesh

• Additional assumption

 $\odot\,{\rm 3D}$ mesh with generated via extrusion

HydrostaticNSVec – the model

• Hydrostatic 1st order approximation

$$\frac{\partial v_z}{\partial x} \Big/ \frac{\partial v_x}{\partial z} \,, \quad \frac{\partial v_z}{\partial y} \Big/ \frac{\partial v_y}{\partial z} \,\sim \, \frac{[W]}{[L]} \Big/ \frac{[U]}{[H]} = \frac{[W]}{[U]} \frac{[H]}{[L]} = \varepsilon^2 \sim 10^{-6}$$

$$G\&B (5.68)$$

• Resulting to:

$$\begin{split} 4\frac{\partial}{\partial x}\left(\eta\frac{\partial v_x}{\partial x}\right) + 2\frac{\partial}{\partial x}\left(\eta\frac{\partial v_y}{\partial y}\right) + \frac{\partial}{\partial y}\left(\eta\left(\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x}\right)\right) \\ &+ \frac{\partial}{\partial z}\left(\eta\frac{\partial v_x}{\partial z}\right) = \rho g\frac{\partial h}{\partial x}, \\ 4\frac{\partial}{\partial y}\left(\eta\frac{\partial v_y}{\partial y}\right) + 2\frac{\partial}{\partial y}\left(\eta\frac{\partial v_x}{\partial x}\right) + \frac{\partial}{\partial x}\left(\eta\left(\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x}\right)\right) \\ &+ \frac{\partial}{\partial z}\left(\eta\frac{\partial v_y}{\partial z}\right) = \rho g\frac{\partial h}{\partial y}. \end{split}$$

Elliptic operators Diagonally dominated 2x2 block system CSC

Easy!

Nonlinear viscosity

.

Postprocessing fields

• Vertical velocity

$$v_{z} = v_{z}|_{z=b} - \int_{b}^{z} \left(\frac{\partial v_{x}}{\partial x} + \frac{\partial v_{y}}{\partial y}\right) \,\mathrm{d}\bar{z} \,.$$

$$G\&B (5.72)$$

$$W_{z} + v_{x} \frac{\partial b}{\partial x} + v_{y} \frac{\partial b}{\partial y} - v_{z} = N_{b} \bigvee_{b}^{L} \,.$$

$$G\&B (5.31)$$

CSO

• Derivatives appearing in postprocessing are averaged over elements!

- This case should be straight-forward
- How to estimate the error?
- New operators for StructuredProjectToPlane
 - \circ "error norm"
 - \circ "error max"
 - \circ "error projected"

Solver 4 Equation = "ModelError" Procedure = "StructuredProjectToPlane" StructuredProjectToPlane" Active Coordinate = Integer 3 Project to everywhere = Logical True

```
Variable 1 = HorizVelo
Error Variable 1 = String "Flow Solution"
Operator 1 = "error norm"
Target Variable 1 = "velo error"
End
```

```
err = |u - v|/(|u| + |v|)/2
```


Error scaled to [0,0.001]

Solver 4

```
Equation = "ModelError"
Procedure = "StructuredProjectToPlane"
"StructuredProjectToPlane"
Active Coordinate = Integer 3
Project to everywhere = Logical True
```

```
Variable 1 = HorizVelo
Error Variable 1 = String "Flow Solution"
Operator 1 = "error projected"
Target Variable 1 = "velo projected error"
End
```

```
Find c that minimizes |u-cv|!

err = |u - cv|/(|u| + |cv|)/2
```


Error scaled to [0,0.001]

31

Solver 4 Equation = "ModelError" Procedure = "StructuredProjectToPlane" StructuredProjectToPlane" Active Coordinate = Integer 3 Project to everywhere = Logical True

```
Variable 1 = HorizVelo
Error Variable 1 = String "Flow Solution"
Operator 1 = "error max"
Target Variable 1 = "velo error max"
End
```

```
err = |u - v|_{\infty}/(|u|_{\infty} + |v|_{\infty})/2
```


Error scaled to [0,0.001]

HydrostaticNSVec – initial guess for 3D Stokes

- We can run the two solvers in sequence
- Does this help in convergence?
- A simple case with Picard was studied
 - o"Constant-Viscosity Start = False"
- We may be able to replace more expensive iterations with cheaper ones
 - $\odot\,\text{Effect}$ is not dramatic even at best
- Might save initial convergence?

10.11.2023

Relative error with combined iteration count

HydrostaticNSVec – using simpler model as preconditioner?

- For 3D Stokes: Au=b
- For Hydrostatic Stokes: Bv=c
- GCR sequence for Au=b
 - Compute r=Au-b
 - \circ Project r to c
 - \circ Solve Bv=c
 - \circ expand v to dx

- Preliminary machinery in Elmer (for other problems)
- probably does not beat the block preconditioner...

HydrostaticNSVec – consistency test

• ISMIP HOM C

CSC

35 10.11.2023