

Elmer/lce User meeting Nov. 2023

Thomas Zwinger, CSC - IT Center for Science Ltd.

Changes in internal extrusion

Thomas Zwinger

Changes in internal extrusion

- Possibility to include midlayer
- For instance, if one wants to add bedrock underneath icesheet/glacier
- Starting from 2D footprint
- Declaration in Simulation section

Changes in internal extrusion

Simulation
Coordinate System = Cartesian 3D Simulation Type $=$ transient

Timestepping Method = "bdf"
BDF Order = 1
Timestep Intervals(1) = \#Iter
Timestep Sizes(1) = \#dtIni
Steady State Max Iterations $=1$
Steady State Min Iterations = 1
Extruded Mesh Levels = Integer 20
Extruded BC Layers(1) = Integer 5
Preserve Baseline = Logical True
Preserve Baseline = Logical True
Extruded Baseline Layer = Integer 2
Post File = "\$namerun\$.vtu"
Output File = "\$namerun\$.result"
!Output Intervals(1) = 30
Output Intervals(1) = \#OutPut
max output level = 3
End

Changes in internal extrusion

Simulation
Coordinate System = Cartesian 3D Simulation Type $=$ transient

Timestepping Method = "bdf"
BDF Order = 1
Timestep Intervals(1) = \#Iter
Timestep Sizes(1) = \#dtIni
Steady State Max Iterations $=1$
Steady State Min Iterations = 1
Extruded Mesh Levels = Integer 20
Extruded BC Layers(1) = Integer 5 Preserve Baseline = Logical True
Extruded Baseline Layer = Integer 2
Post File = "\$namerun\$.vtu"
Output File = "\$namerun\$.result
!output Intervals(1) = 30
Output Intervals(1) = \#OutPut
max output level = 3
End

Changes in internal extrusion
! This body is located at the ice/bed interface and will be used to solve
This body is locate
the sheet equation

Body 1
Name=
Equation $=2$
Material $=2$
Initial Condition = 1
End
Body 2
Name $=$
Name= "Ice"
Equation $=1$
Equation = 1
Material = 1
Initial Condition $=1$
End
Body 3
Name=
Equation $=3$
Material = 1
Body Force = 1
Initial Condition = 1
End

Changes in internal extrusion

- Even more layers
- Here with 3 layers (ice + sediment + bedrock)

Changes in internal extrusion

extrushion3bdy_only.sif - emacs
 SIMULATION

Simulation
Coordinate System = Cartesian 3D
Simulation Type $=$ transient
Timestepping Method = "bdf"
Timestepping
BDF Order $=1$
Timestep Intervals(1) = \#Iter
Timestep Sizes(1) = \#dtIni
Steady State Max Iterations $=1$
Steady State Min Iterations $=1$
Extruded Mesh Levels = Integer 20
Extruded BC Layers(2) = Integer 810
Preserve Baseline = Logical True
Extruded Baseline Layer = Integer 3
Extruded Mesh Density = Variable Coordinate 1
Post File $=$ "\$namerun\$.vtu"
Output File = "\$namerun\$. result"
Output File $=$ " $\$$ namerun\$.
! 0 itput
Intervals $(1)=30$
Output Intervals(1) = \#OutPut
max output level $=3$

Changes in internal extrusion

With mesh distribution
extrushion3bdy_only.sif - emacs

Changes in internal extrusion

- Baseline (BC 1-4): 3 sides and moulins as points (not visible)

Changes in internal extrusion

- Baseline (BC 1-4): 3 side-lines and moulins as points (not visible)
- Lowest part of extrusion (bedrock, BC 5-8): 3 sides + lines of moulins

Changes in internal extrusion

- Baseline (BC 1-4): 3 side-lines and moulins as points (not visible)
- Lowest part of extrusion (bedrock, BC 5-8): 3 sides + lines of moulins
- Middle part of extrusion (sediment, BC 9-12): 3 sides + lines of moulins

Changes in internal extrusion

- Baseline (BC 1-4): 3 side-lines and moulins as points (not visible)
- Lowest part of extrusion (bedrock, BC 5-8): 3 sides + lines of moulins
- Middle part of extrusion (sediment, BC 9-12): 3 sides + lines of moulins
- Upper part of extrusion (ice, BC 1316): 3 sides + lines of moulins

Changes in internal extrusion

- Baseline (BC 1-4): 3 side-lines and moulins as points (not visible)
- Lowest part of extrusion (bedrock, BC 5-8): 3 sides + lines of moulins
- Middle part of extrusion (sediment, BC 9-12): 3 sides + lines of moulins
- Upper part of extrusion (ice, BC 1316): 3 sides + lines of moulins
- Horizontal surfaces (BC 17-20): bottom until free surface

AMGX now included in devel branch

Thomas Zwinger

AMGX now included in devel branch

- Tested systematically https://github.com/ElmerCSC/elmer-linsys
- Navier problem on slightly more complex geometry
- Tests on mahti.csc.fi (1 node has 2×64 cores AMD Rome and 4 Nvidia Ampere A100 GPUs)
- Compared to tests on CPU-only nodes

AMGX performance

AMGX

https://developer.nvidia.com/amgx

```
@ NVIDIA.DEVELOPER Home Blog Formm Docs Downloads Training
```


AmgX

```
AmgX provides a simple path to accelerated core solver technology on NVIDIA GPUS. AmgX provides up to 10 xacceleration to the computationally intense inear solver portion of simulutions, and is especial. well suited for implicit unstructured methood
It is a high performance, state-of-the-art tibrary and includes a fiextle sover composition system that
allows u usert to esilly construct complex nested solvers and preconditioners.
```


Check out these case studies and white papers:

```
> AmgX: Multi-Grid Accelerated Linear Solvers for Industrial Applic
- AmQ:A Abrary for gPU Accelen
```


Get Started with AmgX Today

``` C API that abstracts the parallelism and GPU implementation.
```


Key Features

```
Flexible configuration allows for nested solvers, smoothers, and preconditioners
Ruge-Steuben algebraic multigrid
Un-smoothed aggregation algebraic multigrid
Krylov methods: PCG, GMRES, BicGStab, and flexible variants
Scoothers: Block-Jacobi, Gauss-Seidel, incomplete LU, Polynomial, dense LU
\(\rightarrow\) MPlial support
> OpenMP support
\(\rightarrow\) Flexible and simple high level C API
```

2. men ©

The Ammx \mathbf{x} brary offers optimized methods for massive paralelelsm, the fiexblilty to choose how the solvers are constructed, and is accessible through a simple
Using the methods and tools from the AmgX IIbary, developers can easily create specilized solvers Using AmgX core methods and rapilly deploy solution on

- Anyone with an Nvidia card (also consumer) can use it
- Downloadable under https://github.com/NVIDIA/AMGX
- Test: WinkelBmPoissonAMGX
- Needs special cmake flags
-DWITH_AMGX:BOOL=TRUE
-DAMGX_ROOT="\$\{AMGX_HOME\}"
-DAMGX INCLUDE DIR="\$\{AMGX HOME\}/include/;\$\{CUDAINC\}" \}
DAMGX_LIBRARY="\$\{AMGX_HOMĒ\}/lib/libamgx.a"
-DCUDA_LIBRARIES="-L\$\{CUDALIB\} -lcusparse -lcublas -lcusolver -lcudart_static
lnvToolsExt -ldl -lpthread /usr/lib64/librt.so" \}
-DCUDA_LIBDIR="\$\{CUDALIB\}"
-DCUDA_INCLUDE_DIR="\$\{CUDAINC\}"

AMGX ctest testcase

$100 \begin{aligned} & \text { GPuo \% } \\ & \text { GPuo men\% }\end{aligned}$
75
50
$\left.\begin{array}{rcccccc}\text { PID } & \text { USER DEV } & \text { TYPE } & \text { GPU } & \text { GPU MEM } & \text { CPU } & \text { HOST MEM Command } \\ 7765 & \text { zwinger } & 0 & \text { Graphic } & 0 \% & 161 \text { MiB } & 3 \%\end{array}\right)$
F2Setup F6Sort F9kill F10Duit F12Save Config

File Edit View Search Terminal Help

 Terminal Help
File Edit View Search Telld_Elmer_devel_dzad5e180_10-26-23_debug]\$ ctest -R AMGX
Test project /home/zwinger/Source/Elmer_devel/build_Elmer_devel_d2ad5e180_10-26-23_debug
Start 751: WinkelBmPoissonAMGX
1/3 Test \#751: WinkelBmPoissonAMGX Passed 4.08 sec
Start 752: WinkelBmPoissonAMGX_np2
2/3 Test \#752: WinkelBmPoissonAMGX_np2 Passed 2.74 sec Start 753: WinkelBmPoissonAMGX_np4

Elmer GPU developments

- Porting to AMD world (ROCalution instead of AMGX)
- Started looking into OpenMP GPU offloading for matrix assembly (this is hard)
- Currently issues with data transfer between main and GPU memory - might go away with next gen hardware
- Final goal is that main Elmer/Ice solvers at some stage run on GPUs

Reporting unused keywords

- Ease of adding keywords in Elmer has a caveat
- You can easily add unused keywords without realizing that they have no effect
- Typos may go unnoticed when casting
- Copy-pasting leaves history of previous sif file
- Not all keywords are futile, they just where not needed this time...

MAIN: Reporting unused list entries for sif improvement!
MAIN: If you do not want these lines undefine > DEVEL_LISTUSAGE < !
Unused keywords:
Simulation debug element
Constants stefan boltzmann
Boundary Condition 2 velocity 1
Boundary Condition 2 velocity 2
Boundary Condition 2 velocity 3
Solver 2 flow model
Solver 2 linear system abort not converged
Solver 2 viscosity newton relaxation factor
Solver 2 nonlinear system consistent norm
MAIN: *** Elmer Solver: ALL DONE ***

Report unused keywords

- Activatio \& deactivation in fem/config.h.cmake
-+"Max Output Level >= 6"
/* Have these defined only for debugging or optimization purposes */
/* \#define DEVEL_LISTCOUNTER */
\#define DEVEL_LISTUSAGE
/* \#define DEVEL_KEYWORDMISSES */

Unused keywords:
Simulation
Simulation
Simulation Simulation Simulation Constants
Boundary Condition 1
Boundary Condition 2
Boundary Condition 2
Boundary Condition 2
Boundary Condition 2
Material 1
Solver 1
Solver 1
Solver 2
Solver 2
Solver 2
Solver 2
Solver 2
Solver 3
Used keywords:
Simulation
Simulation
Simulation
Simulation
Simulation
Simulation
Simulation
Simulation
Constants
Constants
Equation 1
Equation 1
Equation 1
Equation 1
debug element
solver input file
timer: loadmesh real time
timer: meshstabparams real time
initialization phase
stefan boltzmann

name

name
velocity 1
velocity 2
velocity 3
name
active mesh dimension
no matrix
flow model
linear system abort not converged
viscosity newton relaxation factor
nonlinear system consistent norm
active mesh dimension
active mesh dimension
coordinate system
simulation type
steady state max iterations
steady state min iterations
initialize dirichlet conditions
max output level
extruded mesh levels
extruded max coordinate
gas constant
gravity
active solvers
mapcoordinate
hydro-stokes
resultoutput

Body Force
Body Force 1 4

| Boundary Condition 1 | 5 | target boundaries |
| :--- | :--- | :--- | :--- |
| Boundary Condition 2 | 13139 | bottom surface |
| Boundary Condition 2 | 78836 | horizvelo 1 |
| Boundary Condition 2 | 78836 | horizvelo 2 |
| Boundary Condition 3 | 13140 | top surface |
| Material 1 | 5 | density |
| Material 1 | 4 | viscosity |
| Material 1 | 4 | viscosity model |
| Material 1 | 3 | glen exponent |
| Material 1 | 3 | critical shear rate |
| Material 1 | 2 | limit temperature |

Material 12 rate factor 1
Material 12 rate factor 2
Material $1 \quad 2$
Material 1
Material 1
Material 1
Material 1 正
Solver 1
Solver 1
Solver 1
Solver 1
Solver 1
Solver 1 1
Solver $1 \quad 1$
Solver 216
Solver 24
Solver 2 2
Solver $2 \quad 1$
Solver 28
Solver 22
Solver 2 -
Solver 23
Solver 2
rate factor 1
activation energy 1
activation energy 2
glen enhancement factor
set arrhenius factor
arrhenius factor
exec solver
equation
procedure
active coordinate
mesh velocity variable
mesh velocity first zero
dot product tolerance
equation
procedure
variable
optimize bandwidth
linear system solver
linear system iterative me
linear system max iteratio
linear system residual out
linear system convergence

HydrostaticNSVec

- Ref: Ralf Greve \& Heinz Blatter: Dynamics of Ice Sheets and Glaciers
- Motivation
- Missing piece between full 3D Stokes (IncompressibleNSVec) and 2D shell solvers
- Much smaller linear system compared to full Stokes 2×2 vs 4×4
- Pos.def. linear system - Not a saddle-point problem
=> large selection of good linear system strategies!?
- Implementation strategy
- Copy-paste from IncompressibleNSVec
- Use of same keywords as much as possible
- Pre/post processing automated via internal use of structured mesh
- Additional assumption
-3D mesh with generated via extrusion

HydrostaticNSVec - the model

- Hydrostatic 1st order approximation

$$
\frac{\partial v_{z}}{\partial x} / \frac{\partial v_{x}}{\partial z}, \frac{\partial v_{z}}{\partial y} / \frac{\partial v_{y}}{\partial z} \sim \frac{[W]}{[L]} / \frac{[U]}{[H]}=\frac{[W]}{[U]} \frac{[H]}{[L]}=\varepsilon^{2} \sim 10^{-6}
$$

G\&B (5.68)

- Resulting to:

$$
\begin{aligned}
4 \frac{\partial}{\partial x}\left(\eta \frac{\partial v_{x}}{\partial x}\right)+2 \frac{\partial}{\partial x}\left(\eta \frac{\partial v_{y}}{\partial y}\right) & +\frac{\partial}{\partial y}\left(\eta\left(\frac{\partial v_{x}}{\partial y}+\frac{\partial v_{y}}{\partial x}\right)\right) \\
& +\frac{\partial}{\partial z}\left(\eta \frac{\partial v_{x}}{\partial z}\right)=\rho g \frac{\partial h}{\partial x}, \\
4 \frac{\partial}{\partial y}\left(\eta \frac{\partial v_{y}}{\partial y}\right)+2 \frac{\partial}{\partial y}\left(\eta \frac{\partial v_{x}}{\partial x}\right) & +\frac{\partial}{\partial x}\left(\eta\left(\frac{\partial v_{x}}{\partial y}+\frac{\partial v_{y}}{\partial x}\right)\right) \\
& +\frac{\partial}{\partial z}\left(\eta \frac{\partial v_{y}}{\partial z}\right)=\rho g \frac{\partial h}{\partial y} .
\end{aligned}
$$

Elliptic operators
Diagonally dominated 2×2 block system

Easy!

Nonlinear viscosity

- Nonlinear viscosity model exactly as in IncompresibleNSVec with strainrate velocity defined by

$$
\begin{aligned}
d_{\mathrm{e}}= & \left\{\left(\frac{\partial v_{x}}{\partial x}\right)^{2}+\left(\frac{\partial v_{y}}{\partial y}\right)^{2}+\frac{\partial v_{x}}{\partial x} \frac{\partial v_{y}}{\partial y}+\frac{1}{2} \frac{\partial v_{x}}{\partial y} \frac{\partial v_{y}}{\partial x}\right. \\
& \left.+\frac{1}{4}\left(\frac{\partial v_{x}}{\partial y}\right)^{2}+\frac{1}{4}\left(\frac{\partial v_{y}}{\partial x}\right)^{2}+\frac{1}{4}\left(\frac{\partial v_{x}}{\partial z}\right)^{2}+\frac{1}{4}\left(\frac{\partial v_{y}}{\partial z}\right)^{2}\right\}^{1 / 2}
\end{aligned}
$$

Postprocessing fields

- Vertical velocity

$$
\begin{align*}
& v_{z}=\left.v_{z}\right|_{z=b}-\int_{b}^{z}\left(\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}\right) \mathrm{d} \bar{z} . \tag{5.72}\\
& \frac{\partial \mathrm{t}}{\partial t}+v_{x} \frac{\partial b}{\partial x}+v_{y} \frac{\partial b}{\partial y}-v_{z}=N_{\mathrm{b}}<\langle\mathrm{b}
\end{align*}
$$

G\&B (5.31)

- Derivatives appearing in postprocessing are averaged over elements!

HydrostaticNSVec: Buehler profile

- This case should be straight-forward
- How to estimate the error?
- New operators for StructuredProjectToPlane
o"error norm"
o"error max"
-"error projected"

HydrostaticNSVec: Buehler profile

Solver 4

Equation = "ModelError"
Procedure = "StructuredProjectToPlane"
"StructuredProjectToPlane"
Active Coordinate = Integer 3
Project to everywhere = Logical True
Variable 1 = HorizVelo
Error Variable 1 = String "Flow Solution"
Operator 1 = "error norm"
Target Variable 1 = "velo error"
End

$$
\text { err }=|u-v| /(|u|+|v|) / 2
$$

Error scaled to [0,0.001]

HydrostaticNSVec: Buehler profile

```
Solver 4
    Equation = "ModelError"
    Procedure = "StructuredProjectToPlane"
"StructuredProjectToPlane"
    Active Coordinate = Integer 3
    Project to everywhere = Logical True
    Variable 1 = HorizVelo
    Error Variable 1 = String "Flow Solution"
    Operator 1 = "error projected"
    Target Variable 1 = "velo projected error"
End
```

Find c that minimizes $|u-c v|$!

$$
e r r=|u-c v| /(|u|+|c v|) / 2
$$

Error scaled to [0,0.001]

HydrostaticNSVec: Buehler profile

Solver 4

Equation = "ModelError"
Procedure = "StructuredProjectToPlane"
"StructuredProjectToPlane"
Active Coordinate = Integer 3
Project to everywhere = Logical True
Variable 1 = HorizVelo
Error Variable 1 = String "Flow Solution"
Operator 1 = "error max"
Target Variable 1 = "velo error max"
End

$$
\operatorname{err}=|u-v|_{\infty} /\left(|u|_{\infty}+|v|_{\infty}\right) / 2
$$

Error scaled to [0,0.001]

HydrostaticNSVec - initial guess for 3D Stokes

- We can run the two solvers in sequence
- Does this help in convergence?
- A simple case with Picard was studied

○"Constant-Viscosity Start = False"

- We may be able to replace more expensive iterations with cheaper ones
- Effect is not dramatic even at best
- Might save initial convergence?

Relative error with combined iteration count

HydrostaticNSVec - using simpler model as preconditioner?

- For 3D Stokes: Au=b
- For Hydrostatic Stokes: Bv=c
- GCR sequence for $A u=b$
- Compute r=Au-b
- Project r to c
- Solve Bv=c
o expand v to dx
- Preliminary machinery in Elmer (for other problems)
- probably does not beat the block preconditioner...

HydrostaticNSVec - consistency test

- ISMIP HOM C

