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Mimicking a fully implicit  
time-stepping scheme 
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Weak form of Stokes equations  

WEAK FORM
Find (u, p) 2 V ⇥ Q, such that

(S(Du),Dv)⌦(t) � (p,r · v)⌦(t) + boundary terms = (⇢g,v)⌦(t) 8v 2 V

(r · u, q)⌦(t) = 0 8q 2 Q.
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Numerical models for predicting future ice mass loss of the Antarctic and Greenland ice 
sheets require accurately representing their dynamics. Unfortunately, ice-sheet models 
suffer from a very strict time-step size constraint, which for higher-order models 
constitutes a severe bottleneck; in each time step a nonlinear and computationally 
demanding system of equations has to be solved. In this study, stable time-step sizes are 
increased for a full-Stokes model by implementing a so-called free-surface stabilization 
algorithm (FSSA). Previously this stabilization has been used successfully in mantle-
convection simulations where a similar viscous-flow problem is solved. By numerical 
investigation it is demonstrated that instabilities on the very thin domains required for ice-
sheet modeling behave differently than on the equal-aspect-ratio domains the stabilization 
has previously been used on. Despite this, and despite the different material properties of 
ice, it is shown that it is possible to adapt FSSA to work on idealized ice-sheet domains 
and increase stable time-step sizes by at least one order of magnitude. The FSSA method 
presented is deemed accurate, efficient and straightforward to implement into existing 
ice-sheet solvers.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Our warming climate affects the dynamics of the ice sheets on Antarctica and Greenland, causing an increased ice 
discharge into the oceans. The meltwater contributes significantly to global sea-level rise [1,2]. Accurate computer models 
of ice dynamics are a crucial tool in order to confidently predict future ice mass loss; unfortunately, such models suffer 
from instabilities that severely restrict feasible simulation lengths.

Modeling the evolution of an ice sheet amounts to solving a very viscous, non-Newtonian, gravity-driven moving-
boundary problem. The model is a differential-algebraic equation (DAE) system with the momentum balance as a constraint 
on the time-evolving surface kinematic equation. The standard numerical approach is to: 1) compute the ice velocity and 
pressure by solving the nonlinear full-Stokes (FS) equations or some approximation thereof, e.g., the shallow-ice approxima-
tion (SIA) [3,4], and 2) use the velocity to update the surface position by solving the so-called free-surface equation. This 
process is then repeated in each time step, and effectively couples the free-surface equation to the momentum balance.

A limitation of this approach is that it suffers from instabilities unless the time-step size is small or a fully implicit solver 
is used. However, a fully implicit time-stepping scheme involves solving for velocity and pressure several times in each time 
step in an iterative scheme, which is computationally very expensive.
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Adaptation and testing for  
simple ice sheet simulations
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15-30 times bigger time steps



DO p=1,nd 
DO q=1,nd 

DO i=1,dim 
DO j=1,dim 

STIFF( (p-1)*c+j,(q-1)*c+i ) = &  
STIFF( (p-1)*c+j,(q-1)*c+i )  & 
 - s * FSSAtheta * dt * LoadVec(j) * Basis(q) * Basis(p) * Normal(i) 

END DO 
END DO 

END DO 
END DO  

implemented in/fem/src/modules/IncompressibleNSVec.f90

Implementation in 



vs.

Validation on synthetic case



Boundary Condition 3 
  Name = "surface" 
  Top Surface = Equals "Zs" 
  Target Boundaries = 2 
  Body ID = 2  
  FSSA Theta = Real 1.0         
  FSSA Flag = String “full”  !normal 
  Zs Lower Limit = Equals RefZs 
  FSSA Accumulation = Variable Coordinate 1 
  Real Procedure "accum" "accum" 
End

What to specify in sif-file

branch: fssa-merge 



Midtre Lovénbreen

Setup (e.g. SMB) follows form Välisuo et al (2007), DEM:s from Jack Kohler



Midtre Lovénbreen

Setup (e.g. SMB) follows form Välisuo et al (2007), DEM:s from Jack Kohler

Newton-solver relaxed! 



After 200 years

A. Löfgren, T. Zwinger, Peter Råback, C. Helanow, J.Ahlkrona, Increasing Numerical Stability of 
mountain Valley Glacier Simulations - Implementation and Testing of Free-Surface Stabilisation in 
Elmer/Ice (manuscript in preparation)
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mountain Valley Glacier Simulations - Implementation and Testing of Free-Surface Stabilisation in 
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Note: On coarser mesh, some 
spikes appear in deglaciated 
areas. Also mitigated with the 

stabilisation
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Other Elmer-related work

C. Helanow, J. Ahlkrona,  Preconditioning of singular power-law fluids describing shear-
thinning flow: application to ice-sheet modeling (manuscript in preparation)  

How does the eigenvalues of a ParStokes-like preconditioner depend on 
the critical shear rate and Glen flow law parameter n? 

Not viscosity-scaled

viscosity-scaled
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C. Helanow, J. Ahlkrona,  Preconditioning of singular power-law fluids describing shear-
thinning flow: application to ice-sheet modeling (manuscript in preparation)  

Practical conclusion: For MINI-elements: Low minimum eigenvalues 
if low quality meshes. P2P1 not so sensitive to mesh quality.
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Elmer/Ice related outlook 

• Try stabilisation on an ice sheet? 
 

• Increased stability - worth 
awakening ISCAL (Igor Tominec, 
Clara Henry)


