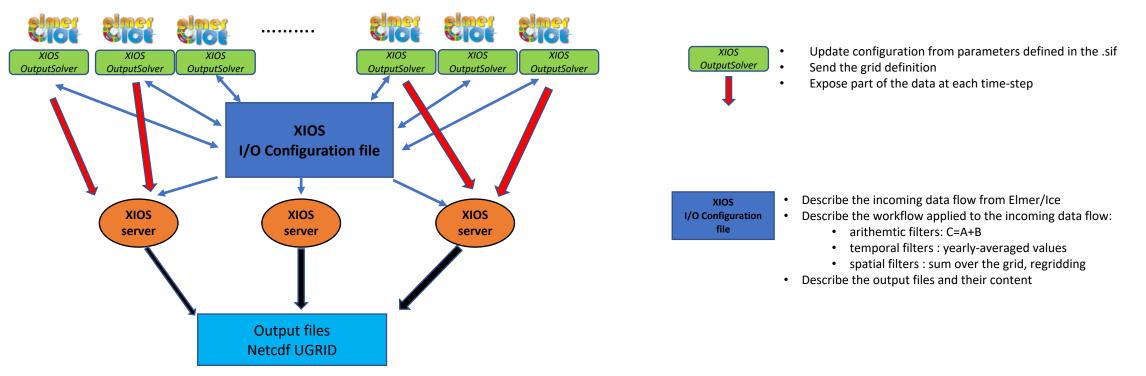


Updates on some Elmer/Ice recent developments Fabien Gillet-Chaulet Fabien Gillet-Chaulet


- I/O with XIOS
- (non-linear) Weertman sliding law in IncompressibleNSVec
- Spatial covariance modelling

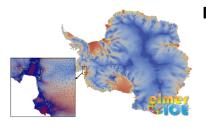
- I/O with XIOS
 - Update on the material presented for ElmerIce User meeting in Dec. 2022
- (non-linear) Weertman sliding law in IncompressibleNSVec
- Spatial covariance modelling

I/O with XIOS

- *XIOS* is a an **external library for I/O** used in several european climate models (e.g. NEMO, LMDz)
- Objectives of *XIOS* are to adress the following challenges for climate data production
 - Flexibility in management of I/O and data/metadata definition
 - Efficient production on supercomputer parallel file systems
 - Complexity and efficiency of post-treatment chain to be suitable for distribution and analysis
- Interface with XIOS as a new Elmer/Ice solver (XIOSOutputSolver)
- In detached mode allocate dedicated cpus for *XIOS*
 - > mpirun –np XX ElmerSolver_mpi : -np YY xios_server.exe

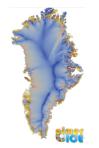
I/O configuration overview

• SIF file :


•	XIOS xml	config file :
•		comig me.

	-	
Solver		<context id="elmerice"></context>
Exec Solver = After Timestep		
		calendar
Equation = "XIOSOutPutSolve"		<calendar time_origin="1995-01-01 00:00:00" type="NoLeap"></calendar>
Procedure = "ElmericeSolvers" "XIOSOutputSolver"		
		fields
		<field_definition></field_definition>
Keywords related to time unit system, time step, start date		
		<pre><field grid_ref="GridNodes" id="h" operation="instant" standard_name="land_ice_thickness" unit="m"></field></pre>
		<pre><field grid_ref="GridCells" id="h_elem" operation="instant" standard_name="land_ice_thickness" unit="m"></field></pre>
! node and elem vars; e.g.		
Scalar Field 1 = String "h"		<pre><field grid_ref="GridCells" id="acabf" operation="average" standard_name="land_ice_surface_specific_mass_balance_flux" unit="m d-1"></field></pre>
Scalar Field 1 compute cell average = Logical True		
		<pre><field grid_ref="ScalarGrid_sum" id="time" name="elmer_time" operation="instant" unit="d"></field></pre>
Scalar Field 2 = String "acabf"		
		<field field_ref="acabf" id="ismip6_acabf" name="acabf" unit="kg m-2 s-1"> this*\$rhoi/\$nsec_per_day </field>
! Global Variables		
Global Variable 1 = String "time"		
End		files
	J	<file_definition></file_definition>
		<file_group id="file01"></file_group>
		<file convention="UGRID" id="file01" name="MyFileName" output_freq="1y"></file>
		<field field_ref=" ismip6_acabf "></field>
		<variable id="elmerversion" name="model_version" type="string"> elmer ice </variable>
		< / contauts

Codes, tools, files to run and process standard ISMIP6 simulations maintained by IGE:


• <u>https://github.com/pmathiot/ELMER_ISMIP6_Antarctica</u>

ISMIP6-Antarctica-2300:

- 2 contributions:
 - IGE; J. Caillet
 - UTAS; C. Zhao
- SSA (shelves, 1km-50km)
- I/O-Post-Processing; Melt parameterisations

• <u>https://gricad-gitlab.univ-grenoble-alpes.fr/gilletcf/elmerice_ismip6_gris</u>

ISMIP6-compliant:

- IGE; F. Gillet-Chaulet
- CSC; T. Zwinger
- SSA (shelves)
- I/O-Post-Processing; Forced Front Retreat

> ncdump output_file.nc

	dimensions:		
	<pre>axis_nbounds = 2 ;</pre>		
	Two = 2;		
	nmesh2D_node = 221562 ;		
	nmesh2D_edge = 633466 ;		
	nmesh2D_face = 411905 ;		
	nmesh2D_vertex = 3 ;		
	<pre>time = UNLIMITED ; // (86 currently)</pre>		
	variables:		
	int mesh2D ;		
	<pre>mesh2D:cf_role = "mesh_topology" ;</pre>		
	mesh2D:long_name = "Topology data of 2D unstructured mesh"		
	mesh2D:topology_dimension = 2 ;		
	<pre>mesh2D:node_coordinates = "mesh2D_node_x mesh2D_node_y" ;</pre>		
	mesh2D:edge_coordinates = "mesh2D_edge_x mesh2D_edge_y";		
	mesh2D:edge_node_connectivity = "mesh2D_edge_nodes" ;		
	mesh2D:face_edge_connectivity = "mesh2D_face_edges" ;		
	<pre>mesh2D:edge_face_connectivity = "mesh2D_edge_face_links" ;</pre>		
	<pre>mesh2D:face_face_connectivity = "mesh2D_face_links";</pre>		
	<pre>mesh2D:face_coordinates = "mesh2D_face_x mesh2D_face_y" ;</pre>		
	<pre>mesh2D:face_cooldinates = mesh2D_face_x mesh2D_face_y ; mesh2D:face_node_connectivity = "mesh2D_face_nodes" ;</pre>		
	float mesh2D_node_x(nmesh2D_node) ;		
	mesh2D_node_x:standard_name = "longitude" ;		
	<pre>mesh2D_node_x:long_name = "Longitude of mesh nodes." ;</pre>		
	<pre>mesh2D_node_x:units = "degrees_east" ;</pre>		
	float mesh2D_node_y(nmesh2D_node) ;		
	<pre>mesh2D_node_y:standard_name = "latitude" ;</pre>		
	<pre>mesh2D_node_y:long_name = "Latitude of mesh nodes." ; mesh2D_node_vulnite = "degrees north";</pre>		
	mesh2D_node_y:units = "degrees_north" ;		
	<pre>double time(time) ;</pre>		
	time:axis = "T" ;		
	time:standard_name = "time" ;		
	time:long_name = "Time axis" ;		
	time:calendar = "noleap" ;		
	time:units = "days since 1995-01-01 00:00:00" ;		
	time:time_origin = "1995-01-01 00:00:00" ;		
	<pre>time:bounds = "time_bounds" ;</pre>		
	<pre>double time_bounds(time, axis_nbounds) ;</pre>		
	float xvelmean(time, nmesh2D_face) ; xvelmean:standard_name = "land_ice_vertical_mean_x_velocity" ;		
	<pre>xvelmean:standard_name = 'land_ree_vertical_mean_x_vertery', xvelmean:units = "m s-1";</pre>		
	<pre>xvelmean:mesh = "mesh2D";</pre>		
	<pre>xvelmean:location = "face" ;</pre>		
a)	<pre>xvelmean:online_operation = "instant" ;</pre>		
	<pre>xvelmean:interval_operation = "1 yr" ; wealmoon interval_write = "1 yr";</pre>		
	xvelmean:interval_write = "1 yr" ; xvelmean:cell_methods = "time: point" ;		
	xvelmean:_FillValue = 1.e+20f ;		
	<pre>xvelmean:missing_value = 1.e+20f ;</pre>		
	xvelmean:coordinates = "time_instant mesh2D_face_y mesh2D_face_x" ;		
	// global attributes:		
	<pre>:name = "ismip6_states_marv3.12_access1.3-rcp85-rhigh_1" ;</pre>		
	:description = "Created by xios" ;		
	:title = "Created by xios" ;		
	:Conventions = "UGRID" ; :timeStamp = "2022-Nov-09 05:54:35 GMT" ;		
	:timestamp = "2022-NOV-09 05:54:35 GMI"; :uuid = "49aa435f-f62d-4b8e-81d3-0191d3ea4f75";		
	:model_version = "Elmer/Ice v9.0 (Rev: 29fd3bf4)";		
	:altitude_convention = "altitude reference against geoid EIGEN-EC4" ;		
	:projection = "espg:3413" ;		

• Outputs in netcdf UGRID

- contain meta-data
- Restartable (independent of number of partitions) => UGridDataReader
- Viewable
 - QGIS : as mesh layer with the Crayfish plugin
 - Paraview: reader under development => download a recent nighty build
- Can use many functionalities to manipulate netcdfs nco, cdo....
 - e.g. ncdiff => differences between netcdfs => compare simulations, anomalies
 - E.g. ncea => ensemble average
- Temporal filters
 - Compute time averaged values (or min, max , cumulative)
- Calendar management
- Used/developped by relatively large community in climate models

• •

Restricted to 2D => 2D boundary of a 3D vertically extruded Mesh

- Configuration
 - Need to read XIOS documentation and tutorials
- Works with geographical coordinates (lon,lat)
 - Module *ProjUtils* : (lon/lat) <=> (x,y)
 - Analytical implementation for polar stereographic north (Greenland) and south (Antarctica
 - Interface with fortran gis and *proj4* for other projections (UTM)
 - To see what to do for synthetic experiements...
- Calendar management
 - a year is not a proper time unit (duration depends on the calendar)
 - Time step should be an integer value and a given fraction of the output frequency

- (non-linear) Weertman sliding law in IncompressibleNSVec
- I/O with XIOS
- Spatial covariance modelling

- Implemented a long time ago by Peter
- Previously prescribed as a USF: Sliding_Weertman in USF_Sliding.f90
- Latest elmerice branch (762e8f2db March 1rst 2023)
 - Implement Newton method for non-linear iterations
 - Shows expected speed-up in the convergence of non-linear iterations
 - Examples:
 - elmerice/Tests/Friction_WeertmanNewton2/
 - elmerice/Tests/Friction_WeertmanNewton3D
 - To see for GL applications where contact is tested inside the non-linear iterations loop
 - Update the **adjoint inverse method** to invert for the friction coefficient
 - No proof that it should be better than inverting for the effective friction, but might introduce a discontinuity between inversion and transient simulations
 - Examples:
 - elmerice/examples/Inverse_Methods/StokesWeertman
 - Need to update the doc.
 - Implement Coulomb-type friction law (Newton and inversion)?

Boundary Condition 5 Name = "bottom" Body Id = 3

```
!! Normal-Tangential coordinate system
Normal-Tangential Velocity = Logical True
Velocity 1 = Real 0.0
```

Slip Coefficient derivative = Variable alpha
 REAL procedure "ElmerIceUSF" "TenPowerA_d"

```
Bottom Surface = Variable Coordinate 1
Real MATC "-tx*tan(Slope)-1000.0"
End
```


- (non-linear) Weertman sliding law in IncompressibleNSVec
- I/O with XIOS
- Spatial covariance modelling
 - Come to see my PICO about regularisation in the Mass conservation method

CR2.3 EDI*

Beyond the unconstrained: Driving and assisting cryospheric models with observations | PICO >

Co-organized by CL5/GI5/HS13

Convener: Elisa Mantelli^{ECS} Q | Co-conveners: Johannes Sutter Q, Nanna Bjørnholt Karlsson Q, Olaf Eisen Q

PICO + | Fri, 28 Apr, 10:45–12:30 (CEST) PICO spot 3a

- Codes in elmerice branch since Jan. 2023 (ef1e0b1f1)
 - elmerice/Solvers/Covarianceutils:
 - BackgroundErrorCostSolver.F90 =>
- => Data Assimilation (Regularisation)
 - GaussianSimulationSolver.F90
- => Generate random fields from the given covariance matrix
- CovarianceVectorMultiplySolver.F90 => Gaussian Filter
- No documentation, no automatic testing and no examples yet in the distribution; just ask if interested...

We consider the following inverse problem:

 $\mathbf{y}^o = \mathbf{H}\mathbf{x}^t + \epsilon^o$

Estimate the « true » state of a system $\mathbf{x}^t \in \mathbb{R}^n$, from a set of observations $\mathbf{y}^0 \in \mathbb{R}^m$ (in general $m \ll n$), such that:

H is a linear observation operator

 ϵ^o is the observation error (assumed <u>unbiaised</u>), with covariance matrix ${f R}$

We also have a first estimate x^b (from lab experiments, a climatology, a previous model forecast, ...), such that :

 $\mathbf{x}^b = \mathbf{x}^t + \epsilon^b$ ϵ^b is the background error (assumed unbiaised), with covariance matrix \mathbf{B}

The Best Linear Unbiaised Estimation (BLUE) is given by :

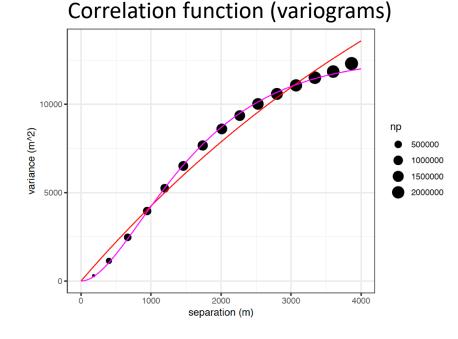
 $\mathbf{x}^{a} = \mathbf{x}^{b} + \mathbf{K} \left(\mathbf{y}^{o} - \mathbf{H} \mathbf{x}^{b}
ight)$ where the Kalman gain is given by $\mathbf{K} = \mathbf{B} \mathbf{H}^{T} \left(\mathbf{R} + \mathbf{H} \mathbf{B} \mathbf{H}^{T}
ight)^{-1}$

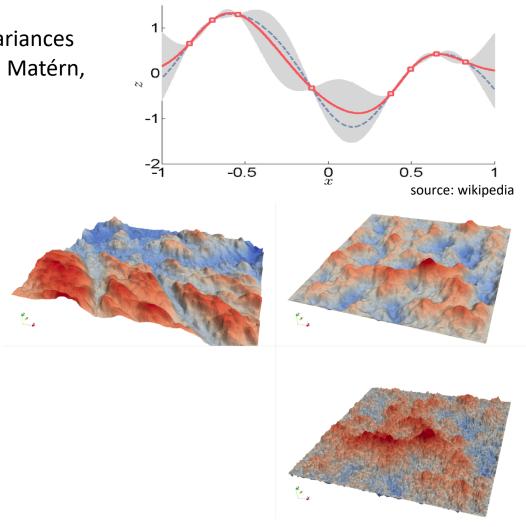
After some calculations, it can be shown that the same estimation minimises the following cost function:

$$J(\mathbf{x}) = \frac{1}{2}(\mathbf{y}^o - \mathbf{H}\mathbf{x})\mathbf{R}^{-1}(\mathbf{y}^o - \mathbf{H}\mathbf{x}) + \frac{1}{2}(\mathbf{x} - \mathbf{x}^b)\mathbf{B}^{-1}(\mathbf{x} - \mathbf{x}^b) = > \text{Can be seen as a "Regularisation" term}$$

Comments:

=> Require to properly define the covariance matrices R and B (and the background)


=> "scientific issues" for properties that are very poorly constrained (friction)


=> "technical issues" covariances matrices are full-rank matrices so in general you can not store them
=> in general no proof of optimality for non-linear, non-gaussian, biased cases

Overcoming these issues

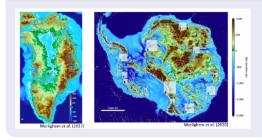
Scientific issues:

- Analogies with geostatistic:
 - Interpolation by Kriging requires to parametrized prior co-variances using standard correlation functions (Exponential, Gaussian, Matérn, ...)

Rq. in general real bed elevations are not gaussian, there is features (valleys, ..)

Scientific issues:

- Analogies with geostatistic:
 - Interpolation by Kriging requires to parametrized prior co-variances using standard correlation functions (Exponential, Gaussian, Matérn, ...)


Numerical issues:

- You don't really need B, but an equivalent **operator** (the action of B on a vector)
 - **Diffusion operators** can be used to model a class of correlation functions from the Matérn family (cf e.g. Guillet et al., 2019)
 - It consist in iteratively solving a diffusion-type equation
 - => can be applied on unstructured meshes with the FEM
 - => relatively cheep and memory efficient

- I have implemented the possibility to compute B (and B-1 and L)
 - with standard correlation functions (and lapack routines to compute the inverse and square root)
 - => restricted to small serial problems (~up to 10-20 knodes)
 - with the diffusion operator approach (based on Guillet et al. 2019)
 - => can be used for large parallel simulations

The mass conservation method

- is a method to interpolate radar-derived ice thickness data
- is used in the reference **BedMachine** products

=> is in Elmer/Ice since a while but has never really been used

is a control method

• The ice thickness, *H*, is solution of the **steady-state** continuity equation:

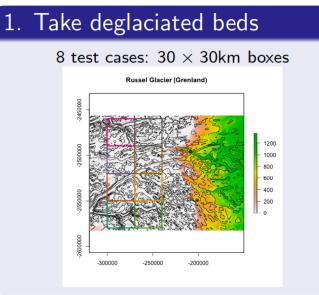
 $\nabla(\bar{\mathbf{u}}H) = \dot{\mathbf{a}}$

• The optimal ice thickness *H* minimizes:

$$J(\boldsymbol{\bar{u}}, \dot{\boldsymbol{a}}) = \frac{1}{2}(H - H^{obs})\boldsymbol{R}^{-1}(H - H^{obs}) + \frac{1}{2}\boldsymbol{R}_{reg}$$

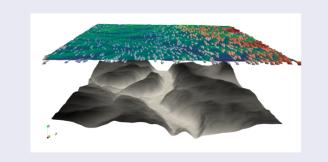
Objective: Test the sensitivity to the regularisation term R_{reg}

• is often chosen as a **Tikhonov** regulatrisation term that penalizes spatial derivatives of *H*:

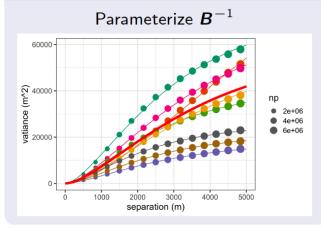

$$R_{T}(H) = \lambda \int_{\Omega} ||\nabla H||^{2} \mathrm{d}\Omega$$

• In a **Bayesian** framework, regularisation is introduced from prior information about the solution:

$$R_B(H) = (H - H^b)\boldsymbol{B}^{-1}(H - H^b)$$



Synthetic twin experiments



2. Add 1000 m of ice

Generate a perfect model solution

3. Regularisation $R_B(H)$

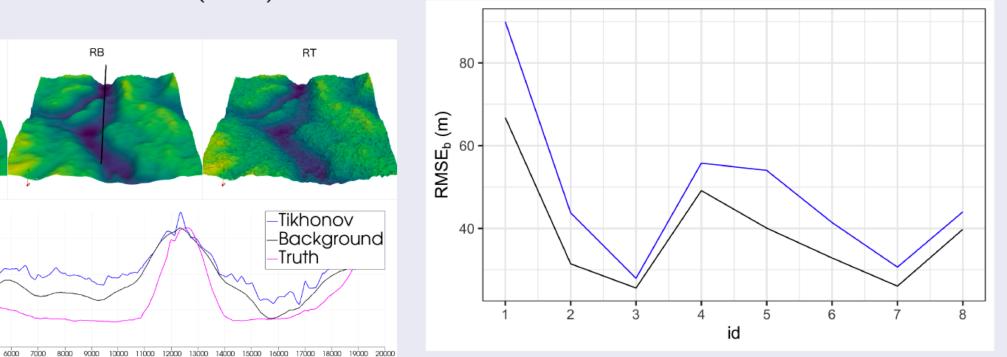
- **spatial correlation** is parametrised using standard correlation functions, as done for kriging
- Fit standard **Matérn covariance** functions from variograms using geostastical modelling tools
- B^{-1} is applied as a diffusion operator on the unstructured FE mesh (Guillet et al., 2019)

Results

-1200

-1400-

-1600

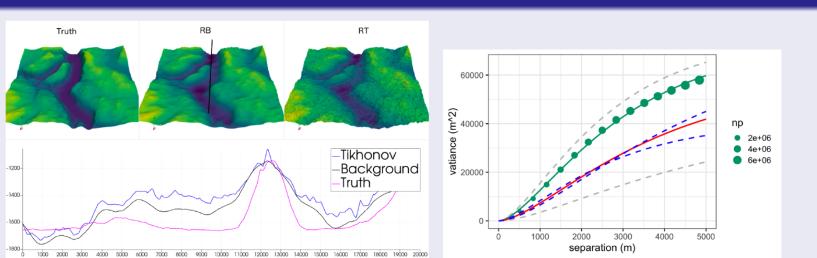

-1800-

1000 2000 3000 4000 5000

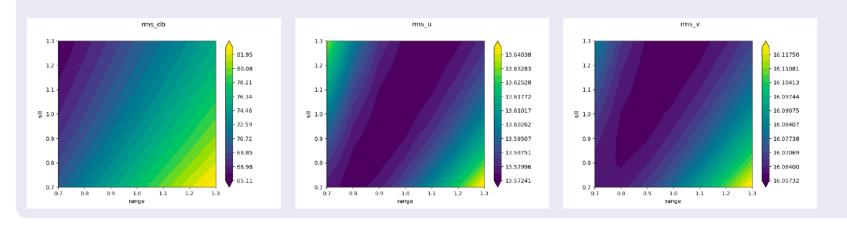
Truth

Reconstructed beds (id=1)

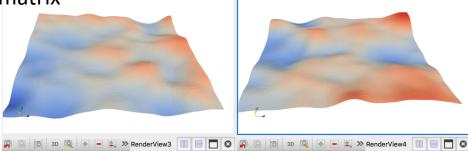
RB

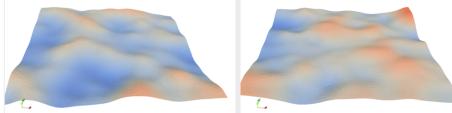


 $RMSE_b$ for all cases


- $R_B(H)$ regularisation **always provides** the best reconstruction
- $R_T(H)$ underestimates correlation at short distances

Results: Case 1




• Sensitivity to range and sill:

- Data assimilation (B^-1) => BackgroundErrorCostSolver.F90
 - More difficult to define B for friction/viscosity inversions
 - But no so different that adjusting the weights in Tikhonov regularisation and you can show that it's equivalent in some cases (regular 1D mesh, ...)
 - Parameters (range; sill) have physical meanings and should be consistent across mesh resolution
 - See e.g. A framework for time-dependent Ice Sheet Uncertainty Quantification, applied to three West Antarctic ice streams, Recinos et al., under review (TCD) and presented by J. Maddison in the modelling session
- Gaussian simulations (B=LL^T; y=μ + L.z) => GaussianSimulationSolver.F90
 - You can **draw random samples** using the same parameterised covariance matrix (requires to compute the square root)
 - Uncertainty quantification using ensemble methods
 - See Bulthuis, K., & Larour, E. (2022). Implementation of a Gaussian Markov random field sampler for forward uncertainty quantification in the Ice-sheet and Sea-level System Model v4.19. Geoscientific Model Development, 15(3), 1195–1217. <u>https://doi.org/10.5194/gmd-15-1195-2022</u>

• Gaussian filters (smoothing noisy data) (B) => CovarianceVectorMultiplySolver.F90