

Elmer/Ice - NEMO coupling

Elmer-Ice Workshop 2022

Pierre Mathiot

In collaboration with:

N. Jourdain¹, F. Gillet-Chaulet¹, B. Urruty¹, O. Gagliardini¹, R. Smith², A. Sianhaan³, P. Holland³, A. Jenkins⁴

- ¹: IGE, Grenoble, France
- ²: Reading University, UK
- ³: BAS, Cambridge, UK
- 4: Northumbria University, NewCastle, UK

Elmer/Ice – NEMO coupling

NEMO role: compute the ice shelf melt.

ELMER role:

- Compute the new ice shelf draft
- Compute iceberg calving

Workflow:

- ELMER and NEMO run sequentially
- Coupling via netcdf files at restart step

Constrain:

Adjust ocean restart to new geometry => key point for NEMO

Ice shelf draft interpolation

Method:

via an ELMER solver

Issues:

- It depends only of the 3 nearest nodes
- It is not representative of the NEMO cell where ELMER resolution much higher than NEMO resolution
- Ice shelf front static in time

Elmer/Ice - NEMO coupling

Ice shelf melt interpolation

Method:

 via cdo conservative interpolation

Issue:

- NEMO GL != ELMER GL
 - ⇒ We can have melt beyond the ELMER GL
 - → Melt could not reach
 the ELMER GL

Iceberg calving regridding

Method:

- ELMER solver to compute the flux across the boundary
- Elmer calving assign to nearest NEMO coastal point

Issue:

- Iceberg in NEMO not ready for migration of the ice shelf front.

Iceberg calving

Tracers adjustment

Dynamic adjustment

- In specific condition, w locally can become very large => blow up
- Instead of conserving barotropic transport, we correct horizontal divergence at the first time step: div_b(U)=div_a(U)
- It is like mimicking the masked velocity to compute ssh.

Before coupling (old geometry)

After coupling (new geometry)

NEMO reference simulation

eORCA025.L121-OPM026

Setting:

- **Period:** 1980-2020

- Horizontal resolution: ~10 km at 70S

- **Vertical resolution:** 1m (surf.) and 20m (100m – 1000m)

- **Geometry:** Bedmachine

- Initial conditions: WOA2018

- **Atmospheric forcings:** JRA55

- Tides under ice shelves: CATS2008

- **Icebergs:** Lagrangian model

- Calving: Rignot et al. (2013)

ELMER reference simulation

ANT50.GL1

Settings:

- **Unstructured grid:** 1 km (GL) to 50km

- SSA

- **Friction:** Weertman linear

- **Rheology:** Glen's flow law

- **Initialization:** inversion (no relaxation yet)

=> stress test for the coupled model (big changes)

Elmer/Ice - NEMO coupling

Realistic geometry stress test:

FRIS melt (m/y) y4

ROSS melt (m/y) y4

Elmer/Ice – NEMO coupling

Conclusion:

- All the building blocks are there
- Realistic NEMO coupled with a realistic Elmer/Ice stable despite large change in the geometry at coupling step.

To do before first starting WP3 runs:

- Build ice sheet initial conditions (discussion with IGE WP2 members)
- Define atmospheric forcing scenario (outcome WP1)

Then:

Plenty of thing to improve (interpolation at GL, calving front migration, conservation ...)

Tipping Points in Antarctic Climate Components

The TiPACCs project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 820575

www.tipaccs.eu

