Arctic Glacier Example
 Midtre Lovénbreen, Svalbard

Thomas Zwinger
ElmerTeam
data contributions from Jack Kohler (NPI)

Midtre Lovénbreen

- Midtre Lovénbreen (MLB) is a small glacier very close to the research station in Ny Ålesund (https://www.swisseduc.ch/glaciers/svalbard/midtr e_lovenbreen/index-en.html)
- Very well monitored glacier
- Part of World Glacier Monitoring Service (WGMS) (https://wgms.ch/products_ref_glaciers/midtre-lovenbreen-svalbard/)
- It is a cold-ice glacier in the lower parts, but in the upper parts temperate
- From $50-650 \mathrm{~m}$ a.s.l., $\sim 5 \mathrm{~km}^{2}$
- Like most glaciers under constant retreat

Zwinger T. and J.C. Moore, 2009. Diagnostic and prognostic simulations with a full Stokes model accounting for superimposed ice of Midtre Lovénbreen, Svalbard, The Cryosphere, 3, 217-229, doi:10.5194/tc-3-217-2009

Reconstructing SMB: Midtre Lovénbreen, Svalbard

Pictures and data provided by Jack Kohler, NPI, NOR (2005 DEM from NERC)

- DEM's obtained at different times
- Using 2 consecutive time-levels
- Obtaining averaged DEM

$$
\circ \quad h_{2000}=\left(h_{2005}-h_{1995}\right) / 2
$$

- and local elevation change

$$
\left.\frac{\partial h}{\partial t}\right|_{2000}=\left(h_{2005}-h_{1995}\right) / 11
$$

- Elmer/Ice FS diagnostic simulations $\rightarrow \boldsymbol{u}=(u, v, w)^{\mathrm{T}}$
- Spatial distribution of SMB:

$$
\mathrm{SMB}=\left(\frac{\partial h}{\partial t}+u \frac{\partial h}{\partial x}+v \frac{\partial h}{\partial y}-w\right)
$$

Välisuo, I., T. Zwinger and J. Kohler (2017): Inverse solution of surface mass balance of Midtre Lovénbreen, Svalbard, Journal of Glaciology, 1-10, doi:10.1017/jog.2017.26.

Reconstructing Climate: Midtre Lovénbreen, Svalbard

- This works nicely on MLB, because it is a relatively slow flowing glacier, dominated by SMB
- Quite simple method, as it only needs a single diagnostic run for one time-interval
- BUT: It will fail on any ice-mass that shows significant amount of basal sliding
- Test run: using the 1977-1995 time interval
- Using SMB 77-95 obtained with DEM method (to the right)
- Starting with 77 DEM, integrating for 18 years, obtaining surface change by solving kinematic free surface equation
- Comparison of computed 1977-95 result and 1995 DEM

Result produced by 2017 student class at Univ. Helsinki

This exercise

- We take the DEM of 1995
o If running standard virtual machine settings, use the 75 m DEM
- We will first run a diagnostic simulation on the given geometry
- Emphasis on some special features
-3D mesh generation using extrusion
- Restart from 2D data
- Utilizing extruded structure in mesh deformation
- Vectorized \& threaded version of Navier-Stokes
- Block preconditioning
- Semi-Lagrangian solver for purely advective transport i.e. of age
- Users are free to try out different things

- Solution strategies

- Parallel runs

○...

Finalizing mesh using internal extrusion

- The mesh is finalized in memory starting from 2D footprint
- Mind! Here the extruded height does not play any role - Mesh is further adapted to follow true bottom and top DEM

```
Simulation
    Extruded Mesh Levels = Integer 9
    Extruded Max Coordinate = Real 1000
```


Internal mesh extrusion

- Start from an initial 2D (1D) mesh and then extrude into 3D (2D) - Mesh density may be given a geometric ratio and even an arbitrary function
- Implemented also for partitioned meshes
- Extruded lines belong to the same partition by construction!
- Effectively eliminates meshing bottle-necks
- Side boundaries get a BC constraint so that
- 2D constraint BC = 1D constraint BC + offset o offset is set if the baseline BCs are preserved

- Top and bottom boundaries get the next free BC constraint indexes
- Note that the BCs refer directly to the "Boundary Condition"

○"Target Boundaries" is used only when reading in the mesh in the 1st place and they are not available any more at this stage

```
Extruded Mesh Levels = 21
Extruded Mesh Density = Variable Coordinate 1
Real MATC "1+10*tx"
```


Restart from 2D data: Mesh2MeshSolver

- We can take 2D data and interpolate it to top/bottom layers of 3D mesh
-2D interpolation task with z-coordinate neglected
- Makes workflow easier since the data needs to be interpolated only once to an Elmer mesh
- 2D file is read in full to all processes
- Same restart file can be used for any number of cores!
- We have precomputed restart files for you!

```
Solver 1
    Exec Solver = "before all"
    Equation = "InterpSolver"
    Procedure = "Mesh2MeshSolver" "Mesh2MeshSolver"
    ! Restart is here always from a serial mesh
    Mesh = -single $restartdir
    Restart File = $restartfile
    ! We use the primary 2D mesh with local copy
    Mesh Enforce Local Copy = Logical True
    ! These are the variables for restart
    Restart Position = Integer 0
    Restart Variable 1 = String "bedrockDEM"
    Restart Variable 2 = String "surfaceDEM1995"
    ! Ensures that we perform interpolation
    ! on plane
    Interpolation Passive Coordinate = Integer 3
End
```


Utilizing extruded structure: StructuredMeshMapper

- The shape of the mesh needs to be accommodated
o Bottom of ice follows bedrock
- Top of ice follows ice surface
- This could be done using generic 3D techniques - MeshSolve (version of linear elasticity equation) - Expensive and unnecessary!
- We can apply to each vertically extruded node 1D mapping
- Very cheap!


```
! Maps the constant-thickness mesh
! between given bedrock and surface topology
Solver 2
    Exec Solver = "before simulation"
    Equation = "MapCoordinate"
    Procedure = "StructuredMeshMapper" "StructuredMeshMapper"
    Active Coordinate = Integer 3
    Displacement Mode = Logical False
    Correct Surface = Logical True
    Minimum Height = Real 10.0
    Correct Surface Mask = String "Glaciated"
    Dot Product Tolerance = 1.0e-3
    ! Allocate some fields here
    Variable = MeshUpdate
    Exported Variable 1 = "bedrockDEM"
    Exported Variable 1 Mask = String "BedRock"
    Exported Variable 2 = "surfaceDEM1995"
    Exported Variable 2 Mask = String "Surface"
End
```


Utilizing extruded structure: StructuredMeshMapper

- Imposing a minimum extrusion depth


```
! Maps the constant-thickness mesh
! between given bedrock and surface topology
Solver 2
    Exec Solver = "before simulation"
    Equation = "MapCoordinate"
    Procedure = "StructuredMeshMapper" "StructuredMeshMapper"
    Active Coordinate = Integer 3
    Displacement Mode = Logical False
    Correct Surface = Logical True
    Minimum Height = Real 10.0
    Correct Surface Mask = String "Glaciated"
    Dot Product Tolerance = 1.0e-3
    ! Allocate some fields here
    Variable = MeshUpdate
    Exported Variable 1 = "bedrockDEM"
    Exported Variable 1 Mask = String "BedRock"
    Exported Variable 2 = "surfaceDEM1995"
    Exported Variable 2 Mask = String "Surface"
End
```


Using extruded structure for mapping: StructuredProjectToPlane

- We may perform various operations
- Along the extruded 1D (vertical) lines
- Computation of height \& depth
- Computation of integrals over the depth etc.

```
! Computes height and depth assuming an
! extruded mesh.
Solver 3
    Exec Solver = "before simulation"
    Equation = "HeightDepth"
    Procedure = "StructuredProjectToPlane" \ \downarrow
        "StructuredProjectToPlane"
    Active Coordinate = Integer 3
    Operator 1 = depth
    Operator 2 = height
End
```


Optimized Stokes solver: IncompressibleNSVec

- Legacy module FlowSolve is one of the oldest in Elmer
- Has a lot of extra baggage
- Cannot ideally utilize modern CPU architectures
- IncompressibleNSVec:
o Includes vectorization and threading
- Takes use of code modernization in many places
- Unfortunately vectorization and threading make the code less readable
- Performance boost depends heavily on the length of the vectors = Number of Gaussian integration points

```
O00, a incompressibleNSVec.F90-emacs
            dBasisdxVec(1:ngp,1:ntot,i), dBasisdxVec(1:ngp,1:ntot,j), weight_c, stif?
s ford(1:ntot,1:ntot,i,j))
            END DO
        END DO
    END IF
    IF (GradPVersion) THEN
        : b(u,q) = (u,grad q) part
        l b(u,q) = (u,
            CALL LinearForms_UdotV(ngp, ntot, elemdim, &
            BasisVec, dbasisdxvec(:,:,i), detJVec, stifford(:,:,i,dofs))
            StiffOrd(:,:,dofs,i) = transpose(stifford(:,:,i,dofs))
        END DO
    ELSE
            DO i=1,dim
            dBasisdxVec(:, :, i), BasisVec, -detJVec, StiffOrd(:,:,i,dofs))
            StiffOrd(:,:,dofs,i) = transpose(stifford(:,:,i,dofs))
        END DD
    END IF
    ! Masses (use symmetry)
    ! Compute bilinear form G=G+(alpha u, u) =u .dot. (grad u)
    (.NOT. StokesFlow ) THEN
sec)
    | Scatter to the usual local mass matrix
    DO i=1, dim
        mass(i::dofs, i::dofs) = mass(i::dofs, i::dofs) + VelocityMass(1:ntot, 1:ntot)
        END D
ICALL LinearForms_UdotU(ngp, ntot, elemdim, BasisVec, DetJVec, PressureMass, -kap
    C)
        !mass(dofs::dofs, dofs::dofs) = mass(dofs::dofs, dofs::dofs) + PressureMass(1:nte
Sot,1:ntot) (IncompressibleNSVec.F90 288 L370 Git-devel (F90 AC Abbrev)
```


Optimized Stokes solver: IncompressibleNSVec

- New CPU architectures use vector units (SIMD) to do fast computations (AVX2/AVX512)
- Cache misses (=memory performance) governed by data-layout
olf you (on an Intel chip) ignore this, you easily loose $3 / 4$ of your performance by not utilizing whole cache line
- Until quite recently, assembly procedures in Elmer did not utilize SIMD and did not have a cache-friendly data layout, neither where they threaded (OMP)
- IncompressibleNSVec does!
- Interface to block-preconditioner functionality to increase solution efficiency
- Or to allow for Krylov methods at all

By Vadikus - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=3 9715273

- SIMD first step to enable code for accelerators

Optimized Stokes solver: IncompressibleNSVec

Mind the

Comparison vectorised/legacy Solver using Intel VTune

Optimized Stokes solver: IncompressibleNSVec

- We have to specify that this is a Stokes model - Inertia terms neglected
- Number of integration points affects the accuracy of discretization
- Has significant effect on performance!
- We may use different solution techniques for linear solver
- Iterative method
- Direct method
- Block preconditioning (next topic)

```
Solver 4
    Equation = "Stokes-Vec"
    Procedure = "IncompressibleNSVec" "IncompressibleNSSolver"
    Flow Model = Stokes
    ! 1st iteration viscosity is constant
    Constant-Viscosity Start = Logical True
    ! Accuracy of numerical integration (on wedges)
    Number of Integration Points = Integer 44 ! 21, 28, 44, 64
    ! Iterative approach:
    Linear System Solver = Iterative
    Linear System Iterative Method = "GCR"
    Linear System Max Iterations = 500
    Linear System Convergence Tolerance = 1.0E-08
    Linear System Preconditioning = "ILU1"
    Linear System Residual Output = 10
    ! Direct approach (as alternative to above):
    !Linear System Solver = Direct
    !Linear System Direct Method = MUMPS
    !Non-linear iteration settings:
    Nonlinear System Max Iterations = 50
    Nonlinear System Convergence Tolerance = 1.0e-5
    Nonlinear System Newton After Iterations = 10
    Nonlinear System Newton After Tolerance = 1.0e-1
    Nonlinear System Consistent Norm = True
    ! Nonlinear System Relaxation Factor = 1.00

\section*{Optimized Stokes solver: IncompressibleNSVec}
- We can start with constant viscosity
- Eliminates need for initial guess - takes value of Viscosity in Material
- Nonlinear solver takes use of Newton linearization
- Starts with Picard iteration that has larger radius of convergence
```

Solver 4
Equation = "Stokes-Vec"
Procedure = "IncompressibleNSVec" "IncompressibleNSSolver"
Flow Model = Stokes
! 1st iteration viscosity is constant
Constant-Viscosity Start = Logical True
! Accuracy of numerical integration (on wedges)
Number of Integration Points = Integer 44 ! 21, 28, 44, 64
! Iterative approach:
Linear System Solver = Iterative
Linear System Iterative Method = "GCR"
Linear System Max Iterations = 500
Linear System Convergence Tolerance = 1.0E-08
Linear System Preconditioning = "ILU1"
Linear System Residual Output = 10
! Direct approach (as alternative to above):
!Linear System Solver = Direct
!Linear System Direct Method = MUMPS
!Non-linear iteration settings:
Nonlinear System Max Iterations = 50
Nonlinear System Convergence Tolerance = 1.0e-5
Nonlinear System Newton After Iterations = 10
Nonlinear System Newton After Tolerance = 1.0e-1
Nonlinear System Consistent Norm = True
! Nonlinear System Relaxation Factor = 1.00
End

```

\section*{Optimized Stokes solver: IncompressibleNSVec}
- Material section stays quite the same as in legacy solver
- Remember from previous slide: start from constant, Newtonian Viscosity (here1 MPa a \({ }^{-1}\) ) using keyword

Constant-Viscosity Start \(=\) Logical True
```

Material 1
Name = "Ice"
Density = Real \$rhoi
! First round viscosity with Newtonian fluid
! happens to give velocities of proper size
Viscosity = Real 1.0
! Non-Newtonian viscosity
Viscosity Model = String Glen
Glen Exponent = Real 3.0 !(yes, you may also try 4.0)
Critical Shear Rate = Real 1.0E-10
! Paterson value in MPa^-3a^-1
Limit Temperature = Real -10.0
Rate Factor 1 = Real \$A1
Rate Factor 2 = Real \$A2
Activation Energy 1 = Real \$Q1
Activation Energy 2 = Real \$Q2
Glen Enhancement Factor = Real 1.0
Relative Temperature = Real \$Tc
End

```

\section*{Advecting scalars with ice: ParticleAdvector}
- Uses ability to follow particles in the mesh o Initially implemented for true physical particles
- Particles are made to travel backward in time along the flowlines
- Values may be integrated along the path or registered at the initial location
```

Solver 5
Equation = ParticleAdvector
Procedure = "ParticleAdvector" "ParticleAdvector"
! Initialize particles at center of elements
Advect Elemental = Logical True
! Timestepping strategy
Particle Dt Constant = Logical False
Max Timestep Intervals = Integer 1000
Timestep Unisotropic Courant Number = 0.25
Max Timestep Size = 1.0e3
Max Integration Time = Real 1.0e4
! Integration forward in time
Runge Kutta = Logical False
Velocity Gradient Correction = Logical True
Velocity Variable Name = String "Flow Solution"
! The internal variables for this solver
Variable 1 = String "Particle Distance"
Variable 2 = String "Particle Time"
Operator 2 = String "Cumulative"
! The field variables being advected
Variable 3 = String "Coordinate 1"
Result Variable 3 = String "Advected X"
Variable 4 = String "Coordinate 2"
Result Variable 4 = String "Advected Y"
Variable 5 = String "Coordinate 3"
Result Variable 5 = String "Advected Z"
End

```

\section*{Running initial case}
- In serial:

ElmerSolver mlb.sif
- In parallel, here with 2 processes:

ElmerGrid 22 outline62_lc50 -partdual -metiskway 2
mpirun -np 2 ElmerSolver_mpi mlb.sif
- Try both of the above and check the timings at the end of the run

\section*{Postprocessing}
- Load the case into ParaView
- Display the advected properties
- which also provide a nice way to determine which tributary the i comes from
- This structure is also reflected in the surface of the glacier (comp picture)


Picture: Midtre Lovénbreen in 1999 (taken by Michael Hambrey)
Source: https://wgms.ch/products_ref_glaciers/midtre-lovenbreen-svalbard/

\section*{Block-preconditioner in IncompressibleNSVec}
- In parallel runs a central challenge is to have good preconditioners that work in parallel
- This problem is increasingly difficult for PDEs with vector fields
o Navier-Stokes, elasticity, acoustics,...
- Strongly coupled multi-physics problems
- Preconditioner need not to be just a matrix, it can be a procedure!
- Use as block-preconditioner a procedure where the components are solved one-by-one and the solution is used as a search direction in an outer Krylov method
- Number of outer iterations may be shown to be bounded
- Individual blocks may be solved with optimally scaling methods - E.g. multilevel methods

What is a preconditioner?:
Instead of solving
\[
\mathrm{K} \cdot \boldsymbol{x}=\boldsymbol{b}
\]

Identify a preconditioner, \(\mathbf{P}\), which makes solution of
\[
K \mathbf{P}^{-1} \cdot x^{\prime}=b
\]
\[
\text { with } \boldsymbol{x}^{\prime}=\mathbf{P} \cdot \boldsymbol{x}
\]
(much) easier than the original problem.

\section*{Block-preconditioner in IncompressibleNSVec}
- Utilizing block-preconditioner
```

Solver 4
Equation = "Stokes-Vec"
Procedure = "IncompressibleNSVec" "IncompressibleNSSolver"
Flow Model = Stokes
! lst iteration viscosity is constant
Constant-Viscosity Start = Logical True
! Accuracy of numerical integration (on wedges)
Number of Integration Points = Integer 44 ! 21, 28, 44, 64
! Iterative approach using BPC:
include "linsys/block4_gcr.sif"
!Non-linear iteration settings:
Nonlinear System Max Iterations = 50
Nonlinear System Convergence Tolerance = 1.0e-5
Nonlinear System Newton After Iterations = 10
Nonlinear System Newton After Tolerance = 1.0e-1
Nonlinear System Consistent Norm = True
! Nonlinear System Relaxation Factor = 1.00
End

```
- Given a block system:
\[
\left[\begin{array}{ccc}
\mathrm{K}_{11} & \cdots & \mathrm{~K}_{1 N} \\
\mathrm{~K}_{N 1} & \cdots & \mathrm{~K}_{N N}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{N}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{b}_{1} \\
\vdots \\
\mathbf{b}_{N}
\end{array}\right]
\]
- Preconditioner is operator which produces new search directions, \(\boldsymbol{s}\), for \(\boldsymbol{x}\)
- Block-Gauss-Seidel or Block Jacobi
\(\mathrm{P}=\left[\begin{array}{cccc}\mathrm{K}_{11} & 0 & 0 & \cdots \\ \mathrm{~K}_{21} & \mathrm{~K}_{22} & 0 & \cdots \\ \cdots & & & \end{array}\right] \quad \mathrm{P}=\left[\begin{array}{cccc}\mathrm{K}_{11} & 0 & 0 & \cdots \\ 0 & \mathrm{~K}_{22} & 0 & \cdots \\ \cdots & & \end{array}\right]\)
- Minimization of residual
\[
r=\left\|\boldsymbol{b}-\mathbf{K} \cdot \boldsymbol{x}^{(k)}\right\|
\]
with outer GCR loop over space
\[
\mathcal{V}_{k}=\mathbf{x}^{(0)}+\operatorname{span}\left\{\mathbf{s}^{(1)}, \mathbf{s}^{(2)}, \ldots, \mathbf{s}^{(k)}\right\}
\]

\section*{Block-preconditioner in IncompressibleNSVec}
- Recommended "natural" outer iterative method is GCR
```

$k=0$
$\mathbf{r}^{(k)}=\mathbf{f}-\mathbf{K} \mathbf{u}^{(k)}$

```
while \(\left(\left\|\mathbf{r}^{(k)}\right\|<T O L\|\mathbf{f}\|\right.\) and \(\left.k<m\right)\)
    Generate the search direction \(\mathbf{s}^{(k+1)}\)
    \(\mathbf{v}^{(k+1)}=\mathbf{K s}^{(k+1)}\)
    do \(j=1, k\)
        \(\mathbf{v}^{(k+1)}=\mathbf{v}^{(k+1)}-\left\langle\mathbf{v}^{(j)}, \mathbf{v}^{(k+1)}\right\rangle \mathbf{v}^{(j)}\)
        \(\mathbf{s}^{(k+1)}=\mathbf{s}^{(k+1)}-\left\langle\mathbf{v}^{(j)}, \mathbf{v}^{(k+1)}\right\rangle \mathbf{s}^{(j)}\)
    end do
    \(\mathbf{v}^{(k+1)}=\mathbf{v}^{(k+1)} /\left\|\mathbf{v}^{(k+1)}\right\|\)
    \(\mathbf{s}^{(k+1)}=\mathbf{s}^{(k+1)} /\left\|\mathbf{v}^{(k+1)}\right\|\)
    \(\mathbf{u}^{(k+1)}=\mathbf{u}^{(k)}+\left\langle\mathbf{v}^{(k+1)}, \mathbf{r}^{(k)}\right\rangle \mathbf{s}^{(k+1)}\)
    \(\mathbf{r}^{(k+1)}=\mathbf{r}^{(k)}-\left\langle\mathbf{v}^{(k+1)}, \mathbf{r}^{(k)}\right\rangle \mathbf{v}^{(k+1)}\)
    \(k=k+1\)
end while
```

Linear System Solver = "Block"
Block Gauss-Seidel = Logical True
Block Matrix Reuse = Logical False
Block Scaling = Logical False
Block Preconditioner = Logical True
! Default is [1 2 3 4]
Block Structure(4) = Integer 1 2 3 4
! Block Order(2) = Integer 2 1
! Linear System Scaling = False
! Linear system solver for outer loop
!---
Outer: Linear System Solver = "Iterative"
Outer: Linear System Iterative Method = GCR
Outer: Linear System GCR Restart = 250
Outer: Linear System Residual Output = 1
Outer: Linear System Max Iterations = 200
Outer: Linear System Abort Not Converged = False
Outer: Linear System Convergence Tolerance = 1e-8

```

\section*{Block-preconditioner in IncompressibleNSVec}
- Stokes problem block-structure

- Optimal pre-conditioner with Pressure-Schur complement, \(\mathbf{Q}\),
\[
\mathbf{P}=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{\mathrm{T}} \\
\mathbf{0} & \mathbf{Q}
\end{array}\right]
\]
- Either split velocity block, A, into \(3 \times 3\) (recommended!)
\[
\text { Block Structure(4)=Integer } 1234
\]
- Or as one

Block Structure(4)=Integer 11114
```

Linear System Solver = "Block"

```
Linear System Solver = "Block"
Block Gauss-Seidel = Logical True
Block Gauss-Seidel = Logical True
Block Matrix Reuse = Logical False
Block Matrix Reuse = Logical False
Block Scaling = Logical False
Block Scaling = Logical False
Block Preconditioner = Logical True
Block Preconditioner = Logical True
! Default is [1 2 3 4]
! Default is [1 2 3 4]
Block Structure(4) = Integer 1 2 3 4
Block Structure(4) = Integer 1 2 3 4
! Block Order(2) = Integer 2 1
! Block Order(2) = Integer 2 1
! Linear System Scaling = False
! Linear System Scaling = False
! Linear system solver for outer loop
! Linear system solver for outer loop
!------------------------------------------
!------------------------------------------
!--------------------------------------------
!--------------------------------------------
    Outer: Linear System Iterative Method = GCR
    Outer: Linear System Iterative Method = GCR
    Outer: Linear System GCR Restart = 250
    Outer: Linear System GCR Restart = 250
    Outer: Linear System Residual Output = 1
    Outer: Linear System Residual Output = 1
    Outer: Linear System Max Iterations = 200
    Outer: Linear System Max Iterations = 200
    Outer: Linear System Abort Not Converged = False
    Outer: Linear System Abort Not Converged = False
    Outer: Linear System Convergence Tolerance = 1e-8
```

 Outer: Linear System Convergence Tolerance = 1e-8
    ```

\section*{Block-preconditioner in IncompressibleNSVec}
- Inner solutions (of blocks)
- Blocks 1,2,3 here associated with velocity components 1,2,3
\[
\mathrm{P}=\left[\begin{array}{cccc}
\mathrm{A}_{1} & 0 & 0 & \\
A_{12} & \mathbf{A}_{2} & 0 & \mathrm{~B}^{\mathrm{T}} \\
A_{31} & A_{23} & \mathrm{~A}_{3} & \\
& 0 & & \mathbf{Q}
\end{array}\right]
\]
- Block 4 associated with pressure (preconditioned with scaled mass matrix is suggested by Elman)
\[
\mathbf{Q}=\mu^{-1} \mathbf{1}
\]
```

block 11: Linear System Convergence Tolerance = \$blocktol
block 11: Linear System Solver = "iterative"
block 11: Linear System Scaling = false
block 11: Linear System Preconditioning = ilu
block 11: Linear System Residual Output = 100
block 11: Linear System Max Iterations = 500
block 11: Linear System Iterative Method = idrs
block 22: Linear System Convergence Tolerance = \$blocktol
block 22: Linear System Solver = "iterative"
block 22: Linear System Scaling = false
block 22: Linear System Preconditioning = ilu
block 22: Linear System Residual Output = 100
block 22: Linear System Max Iterations = 500
block 22: Linear System Iterative Method = idrs
block 33: Linear System Convergence Tolerance = \$blocktol
block 33: Linear System Solver = "iterative"
block 33: Linear System Scaling = false
block 33: Linear System Preconditioning = ilu
block 33: Linear System Residual Output = 100
block 33: Linear System Max Iterations = 500
block 33: Linear System Iterative Method = idrs
block 44: Linear System Convergence Tolerance = \$blocktol
block 44: Linear System Solver = "iterative"
block 44: Linear System Scaling = true
block 44: Linear System Preconditioning = ilu
block 44: Linear System Residual Output = 100
block 44: Linear System Max Iterations = 500
block 44: Linear System Iterative Method = idrs

```

\section*{Run case with BPC - compare to other methods}
- Running the initial case (cl75)
- You may try to run the larger cases ( \(\mathrm{Cl}_{50}, \mathrm{cl}_{25}\) ) - might exceed available memory
- Altering number of integration points
- Does it have an affect on simulation results: ...,21, 28, 44, 64,..?
- Trying out different linear system strategies
- GCR vs. block precondtioner vs. direct solver
omlb_linsys.sif contains linear system recipes with (for GCR, MUMPS and BPC)

\section*{include linsys/method.sif}
- Trying effect of Courant number in particle advection
- NB: You may want to turn off ParticleAdvector iftesting Stokes by adding
```

Exec Solver = never

```
into the corresponding Solver section

Run case with BPC - compare to others
linsys/mumps.sif

linsys/gcr.sif

linsys/block4_idrs.sif

- Mind, that BPC on small cases (here we ran the 75 m mesh) are not necessarily performing faster than the same GCR with a simple pre-conditioner (e.g., ILU)
- Nevertheless, for many cases, Krylov methods with not-optimal pre-conditioners do not work at all
- Direct methods (MUMPS, cPardiso) stop scaling beyond a few hundred cores

\section*{Computing steady state mass balance}
- Add solver for computing emergence velocity
```

! Computing emergence velocity
Solver 6
Equation = "SMB"
Exec Solver = "After Timestep"
Procedure = "ElmerIceSolvers" "GetEmergenceVelocity"
Variable = -dofs 1 EmergenceVelocity
End

```
- Needs also surface normal to be computed o Needs to be run on free-surface boundary, only
```

Body 2
Name = "surface"
Equation = 2
Material = 1 ! Not used, but needed
End
Equation 2
Name = "Surface Equations"
Active Solvers(1) = 6
Convection = String "Computed"
Flow Solution Name = String "Flow Solution"
End
Boundary Condition 4 !free surface boundary
Body ID = 2
End

```
\[
v_{e m}=-u \frac{\partial h}{\partial x}-v \frac{\partial h}{\partial y}+w
\]


White line indicates zero equilibrium SMB (ELA)

Run with mpirun -np 2 ElmerSolver mlb emergence.sif

\section*{Prognostic relaxation run}
- The kinematic BC at the free surface
\[
\frac{\partial h}{\partial t}+u \frac{\partial h}{\partial x}+v \frac{\partial h}{\partial y}-w=\mathrm{a}_{\perp}
\]
\[
v_{e m}=-u \frac{\partial h}{\partial x}-v \frac{\partial h}{\partial y}+w
\]
- In case of equilibrium ( \(\frac{\partial h}{\partial t} \approx 0\) ) reduces to
\[
u \frac{\partial h}{\partial x}+v \frac{\partial h}{\partial y}-w=-v_{e m}=\mathrm{a}_{\perp e q u}
\]
- That means, if we restart a prognostic run using the negative emergence velocity as SMB, we can use it as a relaxation run to even out flaws in the DEMs or the interpolation of those
- There is an obvious issue (most likely from bedrock data) with strong accumulation and ablation around the ELA (see red circle in picture)


\section*{Prognostic relaxation run}
- Following adaptations to previous run:
- Move from steady state to transient in Simulationsection
- Restart from previous file in Simulation-section
- All Exec Solver commands change from before simulation to before timestep
- The variable, Zs, of the new introduced FreeSurfaceSolver (=computation of \(B C\) on surface; see next slide) is initialized to the surface DEM
o And the upper elevation in the StructuredMeshMapper is following Zs
```

Simulation
Coordinate System = "Cartesian 3D"
Simulation Type = "Transient"
! Time-stepping settings
!---
Steady State Max Iterations = 1
Timestepping Method = "BDF" ! implicit Euler
BDF Order = 1
Timestep Sizes = \$1.0/52 ! 1 week
Timestep Intervals = 52
Output Intervals = 1
Restart File = \$restartfile
Restart Before Initial Conditions = Logical True
Interpolation Passive Coordinate = Integer 3
End
Initial Condition 1
Zs = Equals "surfaceDEM1995"
End
Boundary Condition 4
Body ID = 2
Name = "surface"
Top Surface = Equals "Zs"
END

```

\section*{Prognostic relaxation run}

\section*{- Free surface solver is run on Body 2 (the upper surface):}
- The keyword Apply Dirichlet triggers the contact problem to be evaluated. It demands
1. Zs Residual to be declared as Exported Variable
2. Nonlinear System Max Iterations to be set to a value >1 (i.e., non-linear iterations are needed for the contact problem)
3. The value Min Zs to be given in the Material-section declares the lowest possible value (here 10 m above the bedrock) for the contact problem
```

Material 1
Min Zs = Variable "BedrockDem"
Real MATC "tx + 10.0"
End

```
```

Solver 4
Exec Solver = "after timestep"
Equation = "Free Surface"
Variable = String "Zs"
Variable DOFs = 1
Procedure = "FreeSurfaceSolver" "FreeSurfaceSolver"
! This would take the contrained points out of solution
! Use in serial run, only
B Before Linsolve = "EliminateDirichlet" "EliminateDirichlet"
Linear System Solver = Iterative
Linear System Max Iterations = 1500
Linear System Iterative Method = BiCGStab
Linear System Preconditioning = ILUO
Linear System Convergence Tolerance = Real 1.0e-8
Linear System Abort Not Converged = True
Linear System Residual Output = 10
Nonlinear System Max Iterations = 100
Nonlinear System Convergence Tolerance = 1.0e-7
!Nonlinear System Relaxation Factor = 0.60
Steady State Convergence Tolerance = 1.0e-04
! Apply contact problem
Apply Dirichlet = Logical True
! needed for evaluating the contact pressure
Exported Variable 1 = -dofs 1 "Zs Residual"
! needed to host imported emergence velocity
Exported Variable 2 = -dofs 1 "EmergenceVelocity"
How much the free surface is relaxed (default is no
relaxation)
Relaxation Factor = Real \$1.0/3.0
End

```

\section*{Prognostic relaxation run}

1 Time: 20 weeks
- Run with
mpirun -np 2 ElmerSolver mlb_relax.sif
- We see changes of the free surface (here relative to the initial surface DEM), particular in the earlier discussed place


\section*{End of session}

\section*{Things to try, if time permits}
- You could take the relaxed surface and re-run the emergence velocity on it - Or simply include emergence velocity computation in the relaxation run and watch its change
- You could re-compute a steady state age-distribution on the relaxed geometry and investigate, whether things changed
- You could change the equilibrium mass balance (=negative emergence velocity) and do a prognostic run and see a stronger change of the glacier
- Thanks to Jack Kohler (NPI) for providing the bedrock and surface DEM```

