Elmer Release 9.0

CSC

Thomas Zwinger & Peter Råback CSC – IT Center for Science, Finland

Elmer/Ice Zoom meeting

Oct 5, 2020

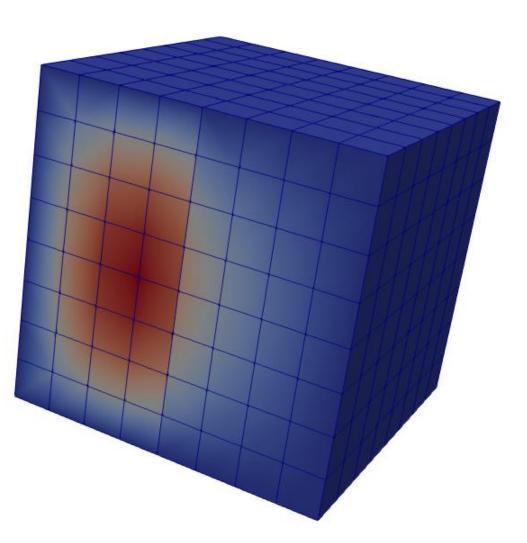
Release 9.0

- Why 9.0 and not 8.5?
- There is a discontinuity in ElmerGUI
 - internal format changes from ElmerPost to VTU
 - Major faceleft thanx to Saeki!
- And we have been several years on 8 series
- Release notes
 - ~1260 commits since last release!
 - <u>https://github.com/ElmerCSC/elmerfem/blob/next_release/</u> <u>ReleaseNotes/release_9.o.md</u>

HeatSolveVec

- Vectorized version of the old legacy modul ONot quite all features of the old solver available
- Some completely new functionality

ODiscontinuous Galerkin


• Reduced Basis DG

Limits discontinuities between desired bodies
 No need to manipulate the mesh

• Possible use in Elmer/Ice

• Define jump condition between ice and bedroc

3

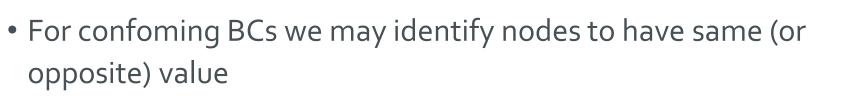
GmshReader & enhanced Gmsh output

- Restart in Elmer is cumbersome
 - separate mesh files + result files
 - Result format not used by any other software
- Sometimes we want to use save/load data only on boundaries

 Complete restart an overkill
- Use Gmsh format
 - \circ Same file includes mesh + results
 - \circ Only limited functionality supported
 - \circ Format supported by other software
 - o GmshReader does interpolation on-the-fly
 - o Output can be masked, e.g. some boundaries only
- Perhaps there could be use in Elmer/Ice workflows

 Not parallel yet!

Internal partitioning


- Either geometric partitiong of Zoltan graph partitioning (thanx Joe!) available
- The idea is to make parallel partitioning more simple • Partition Mesh = Logical True + number of MPI tasks
- Also provides added flexibility

Various hybrid partitioning stategies possible
 Sif may be used to determine optiomal partitioning – physics aware partitioning

• The initial partitioning is a simplification of the repartitioning needed in calving

5

Conforming BCs

- Dealt with permutation, no projection
- Reduces system size instead of increasing it • System size N-M
- Could be usefull for some simple benchmarks mainly
 - \circ Faster computation

6

Primary solver calling other solvers

- This feature enables other Solvers to be called in different stages of the primary Solver
 - \circ Pre Solvers before
 - Post Solvers after
 - Nonlinear Pre Solvers before each nonlinear iteration
 - Nonlinear Post Solvers after each nonlinear iteration
- Together with enhanced block strategies enables solution of strongly coupled problems

Fluid-structure interaction, solid-shell coupling

Parametrisized runs – "Run Control" section

- Enables outer level control of ElmerSolver run
 - Sweep over parameter space using tabulated values in external file (e.g. Dakota)
 - Internal optimization
 - And beyond
- Add's flexibility when designing how to run large number of cases
 - Each job has small constant overhead
 - Thousands of very small jobs not always optimal
- Parameters available in sif file as MATC vector **rpar(0:n-1)**

Parametrisized runs – "Run Control" section

```
Run Control

! Run predefined Dakota cases no 11-15

Run Control Iterations = 5

Parameter File = "LHS_distributions.out"

Parameter Filetype = "dakota"

Parameter Count = Integer 4

Parameter Row Offset = 10

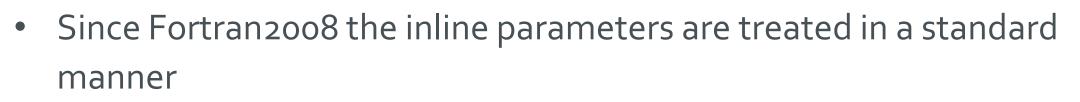
End
```

```
Simulation

! We reassign the parameters so that the sif file is nicer to read.

$cAl=rpar(0)

$cFe=rpar(1)


Material 3

Name = "XAL"

Electric Conductivity = $cAl*2.46161e+07
```


Parametrisized runs – inline parameters

- Standard can be utilized since some years
- New command line argument rpar
 - Followed by number of parameters + the parameters
 - -rpar 2 0.7 0.8
- Available in sif file as MATC vector rpar(0:n-1)
- Similarly integer arguments -ipar

Parametrisized runs – inline parameters

```
ElmerSolver one.sif –rpar 2 0.9 0.7
```

```
Simulation

! We reassign the parameters so that the sif file is nicer to read.

$cAl=rpar(0)

$cFe=rpar(1)

Material 3

Name = "XAL"

Electric Conductivity = $cAl*2.46161e+07
```


0.9 0.9

Use of environmental variables

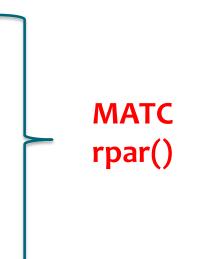
#!/bin/bash for i in {1..5..1}

do

- echo "Running row \$i"
- export ACTIVE_ROW=\$i
- ElmerSolver case.sif

done

In the actual sif file we read in the row, see \$row=env("ACTIVE_ROW")


Summary of parametric operation

Built in ways to tune parameters

- 1. "Run Control" section + files or rules
 - Allows many cases within one simulation
 - May save time + allows internal optimization
- 2. Command-line arguments
 - More simple operation, external tool sets parameters
- 3. Environment variables
 - An alternative way to command-line arguments

Some external parser

• Many tools automate treatmeant of input files

