

Elmer/Ice - New Generation Ice Sheet
Model

Thomas Zwinger, Elmer//ce beginner's course

2D GLACIER TOY MODEL

> These sessions shall introduce into the basics of Elmer/Ice. It follows the strategy of having a possibly simple flow-line setup, but containing all elements the user needs in real world examples, such as reading in DEM's, applying temperature and accumulation distributions, etc.

DIAGNOSTIC RUN

Starting from a given point-distribution (DEM) in 2D we show how to:

- Create the mesh
- Set up runs on fixed geometry (diagnostic)
- Introduce sliding
- Manipulate (structured) mesh shape inside Elmer
- Use tables to interpolate values
- Write a simple MATC function (interpreted functions)
- Post-process results

The diagnostic problem

- We start from a distribution of surface and
bedrock points that have been created driving a prognostic run into steady state

- The distributions are given in the files:
steady_ELA400_bedrock.dat, steady_ELA400_surface.dat

The diagnostic problem

- We will study a ~11 deg inclined glacier
- We will start with a flat mesh (produced with Gmsh) of unitheight

The diagnostic problem

- If you have not already saved the mesh from Gmsh, do the following (find Gmsh instructions at end of slides):
\$ gmsh -2 testglacier.geo
- Use ElmerGrid to convert the mesh:
> ElmerGrid 142 testglacier.msh \}
-autoclean -order 0.11 .00 .01

Needed to
geometry

Orders the numbering in x
y z-directions (highest
number fastest)

The diagnostic problem

The diagnostic problem

- We will do a diagnostic simulation, i.e., we ignore the time derivative in ANY equation
- Stokes anyhow has no explicit time dependence

$$
\nabla \cdot \boldsymbol{\sigma}+\rho \boldsymbol{g}=\mathbf{0}
$$

- That also means, that the surface velocity distribution is a result of the given geometry and cannot be prescribed (no accumulation)
- Open the Solver Input File (SIF)
\$ emacs Stokes_diagnostic.sif\&

The diagnostic problem

```
!echo on
Header
    !CHECK KEYWORDS Warn
        This declares our mesh; capital/small letters matter
    Mesh DB "." "testglacier"
    Include Path "#
    Results Directory "#
End
Simulation
    Max Output Level = 4
    Coordinate System = "Cartesian 2D"
    Coordinate Mapping(3)=123
    Steady State = diagnostic
    Simulation Type = "Steady"
    Steady State Max Iterations = 1
    Output Intervals = 1
    Output File = "Stokes_ELA400_diagnostic.result"
    Post File = "Stokes ELA400 diagnostic.vtu" ! use .ep suffix for leagcy format
    Initialize Dirichlet Conditions = Logical False
End
```


The diagnostic problem

On Bodies and Boundaries

On Bodies and Boundaries

- Each Body has to have an Equation and Material assigned
Body Force, Initial Conditionoptional
- Two bodies can have the same Material/Equation/Body

The diagnostic problem

```
! maps DEM's at the very beginning
! to originally rectangular mesh
! see Top and Bottom Surface in BC's
Solver 1
    Exec Solver = "Before Simulation"
    Equation = "MapCoordinate"
    Procedure = "StructuredMeshMapper" "StructuredMeshMapper"
    Active Coordinate = Integer 2! the mesh-update is y-direction
! For time being this is currently externally allocated
    Mesh Velocity Variable = String "Mesh Velocity 2"
! The lst value is special as the mesh velocity could be unrelistically high
    Mesh Velocity First Zero = Logical True
! The accuracy applied to vector-projections
    Dot Product Tolerance = Real 0.01
End
```

This solver simply projects the shape given in the input files before the run (see Exec Solver keyword) to the initially flat mesh; See Top Surface and Bottom Surface keywordslater

The diagnostic problem

The diagnostic problem

```
Solver 2
    Equation = "HeightDepth"
        Procedure = "StructuredProjectToPlane" "StructuredProjectToPlane"
    Active Coordinate = Integer 2
    Operator 1 = depth
    Operator 2 = height
End
```

Computes flow depth and height based on
vertically aligned ("structured") mesh

The diagnostic problem

! the central part of the problem: the Stokes solver
Solver 3
! Exec Solver = "Never" \# uncommenting would switch this off
Equation $=$ "Navier-Stokes"
Optimize Bandwidth = Logical True
! direct solver
Linear System Solver keyword chooses type of
Linear System Solver $=$ Direct

solution of the linearized problem
Linear System Direct Method = "UMFPACK"
! alternative to above - Krylov subspace iterative solution
! Linear System Solver = "Iterative"
! Linear System Iterative Method $={ }^{\text {"GCR" }}$!or "BICGStab"
Linear System Max Iterations $=5000$
Linear System Convergence Tolerance $=1.0 \mathrm{E}-06$
Linear System Abort Not Converged = False
Linear System Preconditioning $=$ "ILU1"
Linear System Residual Output $=1$

Steady State Convergence Tolerance $=1.0 \mathrm{E}-05$
! Stabilization Method can be [Stabilized, P2/P1, Bubbles]
Stabilization Method $=$ Stabilized You need that in Stokes and also in PDE's with significant amount of convection
Nonlinear System Convergence Tolerance $=1.0 \mathrm{E}-0$
Nonlinear System Convergence Measure = Solution
Nonlinear System Max Iterations $=50$
Nonlinear System Newton After Iterations $=3$
Nonlinear System Newton After Tolerance $=1.0 \mathrm{E}-01$
Nonlinear System Relaxation Factor $=0.75$

On iteration methods

1. Timestep Intervals
2. Steady State Max Iterations
3. Nonlinear Max Iterations
4. Linear System Max Iterations
5. Linear System Convergence Tolerance
6. Nonlinear System Convergence Tolerance
7. Steady State Convergence Tolerance 1.

The diagnostic problem

! we use m-yr-MPa system 1 yr $=31556926.0 \mathrm{sec}$ Material 1

Name = "ice-ice-baby"
Density $=$ Real $\$ 910 . \theta * 1 . \theta E-\theta 6 *(31556926 . \theta)^{\wedge}(-2 . \theta)$
vicosity stuff
Viscosity Model = String "Glen"
! Viscosity has to be set to a dummy value
! to avoid warning output from Elmer
Viscosity $=$ Real 1.0
Glen Exponent $=$ Real 3.0
Critical Shear Rate $=$ Real $1.0 \mathrm{e}-10$
! Rate factors (Paterson value in MPa^-3a^-1)
Rate Factor $1=$ Real 1.258 e 13
Rate Factor $2=$ Real 6.046 e 28
! these are in SI units - no problem, as long as
! the gas constant also is
Activation Energy $1=$ Real 60 e 3
Activation Energy $2=$ Real 139 e3
Glen Enhancement Factor $=$ Real 1.0
$D_{i j}=A \tau_{e}^{n-1} S_{i j} \quad ; \quad S_{i j}=A^{-1 / n} I_{D_{2}}^{(1-n) / n} D_{i j}$
where $\quad I_{D_{2}}^{2}=D_{i j} D_{i j} / 2 \quad$ and $\quad D_{i j}=1 / 2\left(\partial u_{i} / \partial x_{j}+\partial u_{j} / \partial x_{i}\right)$
$A=A\left(T^{\prime}\right)=A_{0} \exp ^{-Q / R T^{\prime}}$

On the choice of units

Elmer(/Ice) does not assume any choice of units. This is on you, BUT, units have to be consistent amongst each other and with the mesh geometry units.
The order of magnitude in numbers do not change results, as matrix is pivoted
For the Stokes problem, one should give values for:

- the density: $\quad \rho \quad\left(=910 \mathrm{~kg} / \mathrm{m}^{3}\right)$
- the gravity: $\quad g \quad\left(=9.81 \mathrm{~m} \mathrm{~s}^{-2}\right)$
- the viscosity:
$\eta_{0} \quad\left(\mathrm{~Pa} \mathrm{~s}^{1 / n}\right) \quad\left(1 \mathrm{~Pa}=1 \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~m}^{-1}\right)$
$\mathrm{kg}-\mathrm{m}-\mathrm{s}[\mathrm{SI}]$: velocity in m / s and time-step in seconds
$\mathrm{kg}-\mathrm{m}-\mathrm{a}:$ velocity in m / a and timesteps in years
$\mathrm{MPa}-\mathrm{m}-\mathrm{a}$: velocity in m / a and Stress in MPa
(What we have in our SIF)

On the choice of units

To give you an example: for ISMIP tests A-D, the value for the constants would be

- the density: $\quad \rho=910 \mathrm{~kg} / \mathrm{m}^{3}$
- the gravity: $\quad g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$
- the fluidity: $\quad A=10^{-16} \mathrm{~Pa}^{-3} \mathrm{a}^{-1}$

	USI kg - m - s		$\mathrm{kg}-\mathrm{m}-\mathrm{a}$		MPa - m - a	
$\mathrm{g}=$	9.81	$\mathrm{m} / \mathrm{s}^{2}$	9.7692E+15	$\mathrm{m} / \mathrm{a}^{2}$	$9.7692 \mathrm{E}+15$	$\mathrm{m} / \mathrm{a}^{2}$
$\rho=$	910	$\mathrm{kg} / \mathrm{m}^{3}$	910	$\mathrm{kg} / \mathrm{m}^{3}$	$9.1380 \mathrm{E}-19$	MPa m ${ }^{-2} a^{2}$
$A=$	3.1689E-24	$\mathrm{kg}^{-3} \mathrm{~m}^{3} \mathrm{~s}^{5}$	1.0126E-61	$\mathrm{kg}^{-3} \mathrm{~m}^{3} a^{5}$	100	$\mathrm{MPa}^{-3} \mathrm{a}^{-1}$
$\eta=$	5.4037E+07	$\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-5 / 3}$	$1.7029 \mathrm{E}+20$	$\mathrm{kg} \mathrm{m}^{-1} a^{-5 / 3}$	0.1710	$\mathrm{MPa} \mathrm{a}{ }^{1 / 3}$

The diagnostic problem

! the variable taken to evaluate the Arrhenius law
! in general this should be the temperature relative
! to pressure melting point. The suggestion below plugs
! in the correct value obtained with TemperateIceSolver
! Temperature Field Variable = String "Temp Homologous"
! the temperature to switch between the
! two regimes in the flow law
Limit Temperature $=$ Real -10.0
! In case there is no temperature variable (which here is the case)
Constant Temperature $=$ Real -3.0
! Heat transfer stuff (will come later)
We set our glacier to be at -3C
! Temp Heat Capacity = Variable Temp
! Real MATC "capacity $(t x) *(31556926 . \theta)^{\wedge}(2 . \theta)^{n}$
!Temp Heat Conductivity = Variable Temp
! Real MATC "conductivity(tx)*31556926.0"1.OE A6"
Now commented, needed later
! Temp Upper Limit = Variable Depth
! Real MATC "273.15-9.8E-08*tx*910.0*9.81" ! \rightarrow this is the correct? gion of the presure melting point with respect to the hydrostatic overburden at $t \mathbf{v}$
Ghe point
End

Body Force 1
Name = "BodyForce1"
Heat Source $=1$
Flow BodyForce $1=$ Real 0.0
Flow BodyForce $2=$ Real $\$-9.81 *(31556926.0)^{\wedge}(2.0)$ End

The diagnostic problem

- Boundary conditions:
o using array function for reading surfaces
oReal [cubic]
expects two columned row:
$\mathrm{X}_{1} \quad \mathrm{Z}_{1}$
$\begin{array}{ll}\mathrm{X}_{2} & \mathrm{Z}_{2}\end{array}$
oinclude just inserts external file (length)
- Right values interpolated by matching interval of left values for input variable

```
Boundary Condition 1
    Name = "bedrock"
    Target Boundaries = 1
    Conpute Normals = Logical True
! include the bedrock DEM, which has two colums
    Bottom Surface = Variable Coordinate 1
    Real cubic
        include "steady_ELA400_bedrock.dat"
    End
    Velocity 1 = Real 0.0e0
Velocity 2 = Real 0.0e0
    End
    Boundary Condition 2
    Name = "sides"
    Target Boundaries(2) = 3 4 ! combine left and right boundary
    Velocity 1 = Real 0.0e0
End
Boundary Condition 3
    Name = "surface"
    Target Boundaries = 2
    include the surface DFM, which has two colums
    Top Surface = Variable Coordinate 1
    Real cubic
        include "steady ELA400 surface.dat"
    End
    Depth = Real 0.0
End
```


The diagnostic problem

- Now, run the case:
\$ ElmerSolver Stokes_diagnostic.sif
- You will see the convergence history displayed:

```
FlowSolve: ------------------------------------------
FlowSolve: NAVIER-STOKES ITERATION 23
FlowSolve: ------------------------------------------
FlowSolve:
FlowSolve: Starting Assembly...
FlowSolve: Assembly done
FlowSolve: Dirichlet conditions done
ComputeChange: NS (ITER=23) (NRM,RELC): ( 1.6112696
0.90361030E-03 ) :: navier-stokes
FlowSolve: iter: 23 Assembly: (s) 0.26 6.04
FlowSolve: iter: 23 Solve: (s) 0.11 2.62
FlowSolve: Result Norm : 1.6112695610649261
FlowSolve: Relative Change : 9.0361030224648782E-004
```


The diagnostic problem

- Post-processing using ParaView: \$ paraview

The diagnostic problem

- File \rightarrow Open stokes_ela400_diagnostic0001.vtu

The diagnostic problem

- Apply

The diagnostic problem

- Change to velocity

The diagnostic problem

- Change colours

Sliding

- Different sliding laws in Elmer
- Simplest: Linear Weertman $\boldsymbol{\tau}=\beta^{2} \boldsymbol{u}$
- This is formulated for the traction $\boldsymbol{\tau}$ and velocity \boldsymbol{u} in tangential plane
- In order to define properties in normal-tangential coordinates: Normal-Tangential Velocity = True
- β^{-2} is the Slip Coefficient $\{2,3\}$ (for the tangential directions 2 and 3) (for 3D, in 2d only direction 2)
- Setting normal velocity to zero (no-penetration)

Velocity $1=0.0$

Sliding

- Now we introduce sliding
- We deploy a sliding zone between $z=300$ and 400 m

Sliding

! Flow Depth still for postprocessing, only,
! now replaced by structured version
Solver 2
Equation $=$ "HeightDepth"
Procedure = "StructuredProjectToPlane" "StructuredProjectToPlane"
Active Coordinate $=$ Integer 2
Operator $1=$ depth
Operator $2=$ height
End

Replace the FlowDepth Solver with this one. This solver simply uses the vertically structured mesh to inquire the Depth/Height without solving a PDE (much cheaper).

Sliding

- Restart from previous run (improved initial guess)

Sliding

- Now, run the case:
\$ ElmerSolver Stokes_diagnostic_slide.sif
- Converged much earlier:

```
FlowSolve: --------------------------------------
FlowSolve: NAVIER-STOKES ITERATION
1 2
FlowSolve: ------------------------------------------
FlowSolve:
FlowSolve: Starting Assembly...
FlowSolve: Assembly done
FlowSolve: Dirichlet conditions done
ComputeChange: NS (ITER=12) (NRM,RELC): ( 3.4915753
0.34732117E-05 ) :: navier-stokes
FlowSolve: iter: 12 Assembly: (s) 0.32 3.53
FlowSolve: iter: 12 Solve: (s) 0.12 1.38
FlowSolve: Result Norm : 3.4915753430899730
FlowSolve: Relative Change : 3.4732116934487441E-006
ComputeChange: SS (ITER=1) (NRM,RELC): ( 3.4915753
2.0000000 ) :: navier-stokes
```


Sliding

- Load parallel to previous file
- File \rightarrow Open stokes_ela400_diagnostic_slide0001.vtu

Sliding

Sliding

Right click right window

Left click on left window

Sliding

Right click right window

End of first session

What you should know by now:

- Basic diagnostic (= steady state with prescribed geometry) iso-thermal simulation
- Linear system, Non-linear system solution
- Iterative/direct solver
- Read-in of simple DEM, manipulation of initial mesh (structured)
- Using tabulated value interpolation
- Writing interpreted MATC function
- Basic Paraview post-processing

HEAT TRANSFER

Starting from the diagnostic setup of the previous session we:

- Compute the temperature for a given velocity field and boundary conditions
- Introduce heat transfer
- Account for pressure-melting point
- Add Thermo-mechanical coupling (viscosity-temperature)

Heat transfer

- Adding heat transfer to Stokes_diagnostic_slide.sif:
-AddElmerIceSolvers TemperateIceSolver with variable name Temp (see next slide)
o Surface temperature distribution: linear from 273.15 K at $\mathrm{z=om}$ to
263.15 K at z=1000m

```
Temp = Variable Coordinate 2
    Real
            0.0 273.15
        1000.0 263.15
    End
```

- Geothermal heat flux of $200 \mathrm{~mW} \mathrm{~m}^{-2}$ at bedrock
- Make sure you restart from

```
Stokes_ELA400_diagnostic_slide.result
```


Heat transfer

```
Solver 5
    Equation = String "Homologous Temperature Equation"
    Procedure = File "ElmerIceSolvers" "TemperateIceSolver"
    Variable = String "Temp"
    Variable DOFs = 1
    Stabilize = True
    Optimize Bandwidth = Logical True
    Linear System Solver = "Iterative"
    Linear System Direct Method = UMFPACK
    Linear System Convergence Tolerance = 1.0E-06
    Linear System Abort Not Converged = False
    Linear System Preconditioning = "ILU1"
    Linear System Residual Output = 0
    Nonlinear System Convergence Tolerance = 1.0E-05
    Nonlinear System Max Iterations = 100
    Nonlinear System Relaxation Factor = Real 9.999E-01
    Steady State Convergence Tolerance = 1.0E-04
End
```


Heat transfer

- Material parameters in Material section

```
Material 1
    ! Heat transfer stuff
    Temp Heat Capacity = Variable Temp
        Real MATC "capacity(tx)*(31556926.0)^(2.0)"
    Temp Heat Conductivity = Variable Temp
        Real MATC "conductivity(tx)*31556926.0*1.0E-06"
End
```

- Using defined MATC-functions for
- Capacity:

$$
\begin{aligned}
& c(T)=146.3+(7.253 \cdot T[\mathrm{~K}]) \\
& \kappa(T)=9.828 \exp \left(-5.7 \times 10^{-3} \cdot T[\mathrm{~K}]\right)
\end{aligned}
$$

- Conductivity:

Heat transfer

- Material parameters in Material section

```
!! conductivity
$ function conductivity(T) { _conductivity=9.828*exp(-5.7E-03*T)}
!! capacity
$ function capacity(T) { _capacity=146.3+(7.253*T)}
```

- Using defined MATC-functions for

$$
\begin{array}{ll}
\text { - Capacity: } & c(T)=146.3+(7.253 \cdot T[\mathrm{~K}]) \\
\text { - Conductivity: } & \kappa(T)=9.828 \exp \left(-5.7 \times 10^{-3} \cdot T[\mathrm{~K}]\right)
\end{array}
$$

Heat transfer

- Now, run the case:
\$ ElmerSolver Stokes_diagnostic_temp.sif
- It goes pretty quick, as we only have one-way coupling and hence don't even execute the Stokes solver

```
Solver 3
    Exec Solver = "Never" ! we have a solution from previous case
    Equation = "Navier-Stokes"
```


Heat transfer

Heat transfer

- Constrained heat transfer:
- Including following lines in Solver section of TemperateIceSolver

```
! the contact algorithm (aka Dirichlet algorithm)
!----------------------------------------------------------
Apply Dirichlet = Logical True
! those two variables are needed in order to store
! the relative or homologous temperature as well
! as the residual
!------------------------------------------------------
Exported Variable 1 = String "Temp Homologous"
Exported Variable 1 DOFs = 1
Exported Variable 2 = String "Temp Residual"
Exported Variable 2 DOFs = 1
```


Heat transfer

- Constrained heat transfer:
- Also introduce the upper limit for the temperature (a.k.a. pressure melting point) in the Material section

```
Temp Upper Limit = Variable Depth
    Real MATC "273.15 - clausclap * tx * 910.0 * 9.81"
    Tpm}=\mp@subsup{T}{0}{}+\mp@subsup{\beta}{\textrm{c}}{}p\quadp\approx\mp@subsup{\rho}{\textrm{ice}}{}g
```


Heat transfer

- Now, run the case:
\$ ElmerSolver
Stokes_diagnostic_temp_constrained.sif
- Already from the norm (~ averaged nodal values) it comes clear that values are in general now lower

```
TemperateIceSolver (temp): iter: 5 Assembly: (s) 1.36 6.77
TemperateIceSolver (temp): iter: 5 Solve: (s) 0.00 0.01
TemperateIceSolver (temp): Result Norm : 271.78121462656480
TemperateIceSolver (temp): Relative Change :
5.0215061382786350E-006
ComputeChange: SS (ITER=1) (NRM,RELC): ( 271.78121 2.0000000
) :: homologous temperature equation
```


Heat transfer

Heat transfer

- Thermo-mechanically coupled simulation:
- We have to iterate between Stokes and HTEq.

```
Steady State Max Iterations = 20
```

- Coupling to viscosity in Material section

```
! the variable taken to evaluate the Arrhenius law
! in general this should be the temperature relative
! to pressure melting point. The suggestion below plugs
! in the correct value obtained with TemperateIceSolver
Temperature Field Variable = String "Temp Homologous"
```


Newton Iterations

- We need Picard (=fixed-point) iterations instead of Newton iterations at the beginning of each new non-linear iteration loop

```
Solver 1
! Exec Solver = "Never"
    Equation = "Navier-Stokes"
    Nonlinear System Reset Newton = Logical True
    !Nonlinear System Relaxation Factor = 0.75
End
```


Heat transfer

Uncoupled
Thermo-mechanically coupled

End of third session

What you should know on top of the previous session:

- Basic diagnostic (= steady state with prescribed geometry) simulation including heat transfer equation (HTEq)
- Introduction of constraint (pressure-melting) into HTEq
- Thermo-mechanically coupled system

PROGNOSTIC RUN

- Starting from a deglaciated situation we show
- How to move to a transient run, i.e., introduce the
- Free surface solution
- Including coupling to climate via prescribing an accumulation/ablation function
- How to write a less simple MATC function
- How to write a (faster than MATC) Lua function

The prognostic problem

- Glacier with ~11 deg constant inclination
- Standard accumulation/ablation function

$$
a(z)=\lambda z+a(z=0)
$$

- Or in terms of ELA (equilibrium line altitude):

$$
a_{\mathrm{ELA}}=\lambda z_{\mathrm{ELA}}+a_{0}=0
$$

- We know lapserate, λ, and $z_{\text {ELA }}$ and have to define $a_{0}=-\lambda z_{\text {ELA }}$

The Problem

- From $x=[0: 2500], z=[0: 500]$
- Setting mesh with 10 vertical levels with 5 m flow depth

$$
\begin{aligned}
& \lambda=11 / 2500(\mathrm{~m} / \mathrm{a}) \mathrm{m}^{-1} \\
& z_{\mathrm{ELA}}=400 \mathrm{~m}
\end{aligned}
$$

The Problem

- Flow problem (Navier-Stokes) in ice
- Free-surface problem on free surface

Time Stepping

```
Simulation
    Max Output Level = 4
    Coordinate System = "Cartesian 2D"
    Coordinate Mapping(3) = 1 2 3
    Simulation Type = "Transient"
    Steady State Max Iterations = 1
    Timestepping Method = "BDF"
    BDF Order = 1
    Timestep Sizes = 10.0
    Timestep Intervals = 200
    Output Intervals = 10
    loutput File = "Stokes_prognostic_ELA400_SMB.result"
!Post File = "Stokes prognostic EL/A400 SMB noflow.vtu"
    Post File = "Stokes__prognostic_\overline{ELA400 SMB flow.vtu"}
    Initialize Dirichlet Conditions = Logical False
End
```


Free Surface Equation

- Free surface equation is only run on - surprise! - the free surface
- Which renders it a lowerdimensional problem
- We need to declare a new($\left.2^{\text {nd }}\right)$ body on this surface

```
Boundary Condition 3
    Name = "surface"
    Top Surface = Equals "Zs"
    Target Boundaries = 2
    Body ID = 2 ! ! ! THIS IS ESSENTIAIL
End
```


Free Surface Equation

```
Body 1
    Name = "Glacier"
    Body Force = 1
    Equation = 1
    Material = 1
    Initial Condition = 1
End
Body 2
    Name = "Surface"
    Body Force = 2
    Equation = 2
    Material = 2
    Initial Condition = 2
```

Ennc

Free Surface Equation

Free Surface Equation

- Starting with same values for both variables set to the bedrock shape of the diagnostic example

```
Initial Condition 2
    Zs = Variable Coordinate 1
        Real cubic
        include "steady_ELA400_bedrock.dat"
        End
    RefZs = Variable Coordinate 1
        Real cubic
        include "steady_ELA400_bedrock.dat"
        End
End
```

```
Material 2
    Min Zs = Variable RefZs
        Real MATC "tx - 0.1"
    Max Zs = Variable RefZs
        Real MATC "tx + 600.0"
End
```


Free Surface Equation

- And here comes the coupling to climate (as a general MATC function)

```
Body Force 2
    Name = "Climate"
    Zs Accumulation Flux 1 = Real 0.0e0
    Zs Accumulation Flux 2 = Variable Coordinate 1, Coordinate 2
        Real MATC "accum(tx)"
End
```

```
function accum(X)
lapserate = (11.0/2750.0);\
ela = 400.0; \
asl = -ela*lapserate;\
if (X(0) > 2500)\
    {_accum = 0.0;}\
else\
    { _accum = lapserate*X(1) + asl;}\
```

$$
\begin{aligned}
& a(z)=\lambda\left(z-z_{\mathrm{ELA}}\right) \\
& \lambda=11 / 2500(\mathrm{~m} / \mathrm{a}) \mathrm{m}^{-1} \\
& z_{\mathrm{ELA}}=400 \mathrm{~m}
\end{aligned}
$$

Free Surface Equation

```
Solver 4
    Exec Solver = always
    Equation = "Free Surface"
    Variable = String "Zs"
    Variable DOFs = 1
    ! needed for evaluating the contact pressure
    Exported Variable 1 = -dofs 1 "Zs Residual"
    I needed for storing the initial shape (needed for updates)
    Exported Variable 2 = -dofs 1 "RefZs"
    Procedure = "FreeSurfaceSolver" "FreeSurfaceSolver"
    l This would take the contrained points out of solution
    ! Use in serial run, only
    : Before Linsolve = "EliminateDirichlet" "EliminateDirichlet"
    Linear System Solver = Iterative
    Linear System Max Iterations = 1500
    Linear System Iterative Method = BiCGStab
    Linear System Preconditioning = ILU0
    Linear System Convergence Tolerance = Real 1.0e-7
    Linear System Abort Not Converged = False
    Linear System Residual Output = 1
    Nonlinear System Max Iterations = 100
    Nonlinear System Convergence Tolerance = 1.0e-6
    Nonlinear System Relaxation Factor = 0.60
    Steady State Convergence Tolerance = 1.0e-03
    Stabilization Method = Bubbles
    ! Apply contact problem
    Apply Dirichlet = Logical True
End
```


Passive elements

- We further switch the (Navier-)Stokes solution to passive in regions with flow-depth below threshold
- This usually brings more stable ice-fronts (uncomment to see difference)

```
Body Force 2
    Name = "Climate"
    Zs Accumulation Flux 1 = Real 0.0e0
    Zs Accumulation Flux 2 = Variable Coordinate 1, Coordinate 2
        Real MATC "accum(tx)"
```

End

The Solution

- Starting with no-flow problem, i.e., only surface mass balance, simply by setting Convection = "none" and (saves time) not executing Navier-Stokes, compare to run with coupled flow
- \$ ElmerSolver Stokes_prognostic.sif

LUA - the faster alternative to MATC

- Similar syntax than MATC, but much faster

```
Body Force 2
    Name = "Climate"
    Zs Accumulation Flux 1 = Real 0.0e0
    Zs Accumulation Flux 2 = Variable Coordinate 1, Coordinate 2
    Real lua "accum(tx[0],tx[1])" 
ind
```

```
!---LUA BEGIN
! -- this is our accumulation rate
    function accum(X,Z)
! if (X > 2500) then
            return 0.0
        else
            return 11.0*Z/2750 - 400.0*11.0/2750.0
        end
    ! end
!---LUA END
```


End of fourth session

What you should know on top of previous sessions:

- Basic prognostic (= time dependent with prescribed surface mass balance) simulation
- Introduced passive elements
- Introduced general MATC function to prescribe accumulation/ablation function
- Introduced general LUA function to prescribe accumulation/ablation function

USER DEFINED FUNCTION

In a follow-up session, by changing the previous setup we show:

- How to write, compile and include a self-written user defined function
- How to introduce time changing variables

User Defined Function

- Replace the MATC/Lua function with a user defined function (UDF)

User Defined Function

```
! internal variables
REAL(KIND=dp) :: lapserate, ela0, dElaDt, elar, accumulationAtS1,s
    inittime, time, elevation, cutoff, offset
LOGICAL :: FirstTime=.TRUE.
! Remember this value
SAVD FirstTime, inittime
! Iets hard-code our values (if we have time we can later make them being read from SIF)
lapserate = 11.0_dp/2750.0_dp
ela0 = 400.0_dp
dElaDt = -0.05_dp
cutoff = 600.0_dp
offset = 1500.\overline{0}
| copy imput (should match the arguments!)
elevation = InputArray(1)
time = InputArray(2)
WRITT (Message, (A,D10.2,A,D10.2)') "elevation=", elevation, "time=", time
CALL INFO("getAccumulation", Message, Level=9)
```

75

User Defined Function

```
: store the initial time, to be sure to have relative times
IF (FirstMime) THEN
    inittime = time
    FirstTime = .FALSE.
END IF
t get change of BLA with time
IF (time > offset) THEN
    elaT = ela0 - dElaDt * (time - offset)
ELSE
    elaT = ela0
BND IE
: lets do the math
accumulationAtSl = -elaT*lapserate
IF (elevation > cutoff) elevation = cutoff
accum = lapserate*elevation + accumulationAtSl
RETURN
ND FUNCIION getAccumulation
```


User Defined Function

The body-force section changes to:

```
Body Force 2
    Name = "Climate"
    Zs Accumulation Flux 1 = Real 0.0e0
    Zs Accumulation Flux 2 = Variable Coordinate 2, Time
        Real Procedure "accumulation" "getAccumulation"
End
```

Compilation is done with:
\$ elmerf90 accumulation.f90 -o accumulation.so

Speedup MATC-LUA-UDF

==> MATC. \log <==
SOLVER TOTAL TIME(CPU,REAL): $\quad 1027.24 \quad 1080.45$
ELMER SOLVER FINISHED AT: 2020/10/31 23:42:46
==> LUA. \log <==
SOLVER TOTAL TIME(CPU,REAL): $\quad 458.81 \quad 471.08$
ELMER SOLVER FINISHED AT: 2020/10/31 23:34:12
$==>$ UDF. $\log <==$
SOLVER TOTAL TIME(CPU,REAL): $434.00 \quad 446.95$
ELMER SOLVER FINISHED AT: 2020/11/01 00:01:21

DON'T USE MATC in performance critical parts

Lua almost as fast as compiled code

End of second session

What you should know on top of previous sessions:

- Replacing (usually slow) MATC function by a compiled Fortran User Defined Function (UDF)

For those, who want to go continue ...
EXERCISE

Exercise

- If time permits, lets put all things together and make a thermo-mechanically coupled prognostic run. What do we need to add?

$$
\begin{array}{ll}
\prod_{\longrightarrow}^{z} & a(z)=\lambda(z-z \in I A) \\
T(z)=T_{z}=0+\lambda I^{z} \\
v=0 & v=0
\end{array}
$$

Creating a mesh

This is additional information on how to create the simple mesh for this run using Gmsh for people to try on their own

Be aware that in the previous example actually we chose a flat mesh which we morphed to the shape of the bedrock, here we are directly producing the bedrock shape in first instance

The Mesh

- Using Gmsh
- Simply launch by:
- \quad g gmsh testglacier.geo \&
- Don't use the existing one in the Solution-folder, since we want to keep it as a backup, should this one fail

The Mesh

The Mesh

The Mesh

- Do that for any further points

```
Point(1) = {2500, 500, 0, backres};
Point(2) = {0, 0, 0, frontres};
Point(3) = {625, 50, 0, frontres};
Point(4) = {1250, 300, 0, backres};
Point(5) = {1600, 250, 0, backres};
```

Parameter	Point	Translation	Rotation	Scale Symmetry
2500		X coordinate		
500		Y coordinate		
0	Z coordinate			
backres	Prescribed mesh element size at point			
0.1	0.1	0.1	Snapping grid spacing	
		Add	<-5	

The Mesh

The Mesh

The Mesh

- Gmsh does journaling into the geo-file
- it immediately writes out your entries
- This means, that you can drive Gmsh also solely via script
- It also means that you can make changes and reload
- Before you load:
- Tools \rightarrow Options: go to tab Advanced
- Under Text editor command: sensible-editor to emacs
- You should do a File \rightarrow Save Options As Default
- Geometry \rightarrow Edit file

The Mesh

- Add:

Layers\{10\};Recombine;

- Save the changes
- In Gmsh:

Geometry \rightarrow Reload

The Mesh

The Mesh

- You have to zoom (mouse wheel) in and out of the model
- and translate (right mouse button)
- Select boundary in the given order (highlights in red) and press "e" every time
- If you selected the wrong boundary, use "u" to unselect

The Mesh

- Finally, mesh the geometry: Mesh $\rightarrow 2 \mathrm{D}$
- And save the mesh: Mesh \rightarrow Save

The Mesh

- The whole script looks like this and can be run via terminal:
\$ gmsh -2 testglacier.geo

gmsh 2 testglacier.geo

