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Reconstructing Climate: Midtre Lovénbreen, Svalbard

Pictures and data provided by Jack Kohler, NPI, NOR (2005 DEM from NERC)

« DEM’s obtained at different times

 Using 2 consecutive time-levels
« Obtaining averaged DEM

o hoooo = (h2005 — h1995)/2
« and local elevation change

O 15000 = (h200s — h1ges) /11

» Elmer/Ice full Stokes diagnostic simulations > ¢, = (4, v 8
« Spatial distribution of SMB: |
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Vdlisuo, I., T. Zwinger and J. Kohler (2017): Inverse solution of
surface mass balance of Midtre Lovénbreen, Svalbard, Journal of
Glaciology, 1-10, doi:10.1017/jog.2017.26.
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oUtilizing extruded structure in mesh deformation
oVectorized & threaded version of Navier-Stokes

03D mesh generat
oRestart from 2D data
oBlock precond
oSolution strategies
oParallel runs

* Users are free to try out different things
O...

* Emphasis on some special features

* We take the DEM of 1995

* We w
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* Here the extruded height does not play any role
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Internal mesh extrusion

e Start from an initial 2D (2D) mesh and then extrude into 3D (2D)

oMesh density may be given a geometric ratio and even an
arbitrary function

* Implemented also for partitioned meshes

oExtruded lines belong to the same partition by construction!

* Effectively eliminates meshing bottle-necks

* Side boundaries get a BC constraint so that

02D constraint BC = 1D contraint BC + offset

ooffset is set if the baseline BCs are preserved

* Top and bottom boundaries get the next free BC constraint Extruded Mesh Levels = 21

indexes Extruded Mesh Density =
oNote thet the BCs refer directly to the “Boundary Condition” Variable Coordinate 1
o"Target Boundaries” is used only when reading in the mesh in the 1st place Real MATC "14+10*tx"

and they are not available any more at this stage



Restart from 2D data: Mesh2MeshSolver

* We can take 2D data and interpolate it to
top/bottom layers of 3D mesh

02D interpolatio task with z-coordinate neglected

* Makes workflow easier since the data needs to be
interpolated only once to an EImer mesh

* 2D file is read in full to all processes

oSame restart file can be used for any number of cores!

* We have precomputed restart files for you!

+

csc

Solver 1
Exec Solver = before all
Equation = "InterpSolver"
Procedure = "MeshZMeshSolver" "MeshZ2MeshSolver"

! Restart 1s here always from a serial mesh
Mesh = -single $restartdir
Restart File = $restartfile

! We use the primary 2D mesh with local copy
Mesh Enforce Local Copy = Logical True

! These are the variables for restart
Restart Position = Integer O

Restart Variable 1 = String "bedrockDEM"
Restart Variable 2 = String "surfaceDEM1995"

! Ensures that we perform interpolation on planc
Interpolation Passive Coordinate = Integer 3
End




Utilizing extruded structure in mesh deformation: StructuredMeshMapper {

! Maps the constant-thickness mesh

.The Shape Ofthe meSh needs tO be ' between given bedrock and surface topology

Solver 2
accomOdatEd Exec Solver = "before simulation"
oBottom of ice follows bedrock Equation = "MapCoordinate"
. . Procedure = "StructuredMeshMapper" "StructuredMeshMappe
oTop of ice follows ice surface
* This could be done using generic 3D techniques Active Coordinate = Integer 3
Displacement Mode = Logical False
oMeshSolve (version of linear elasticity equation) Correct Surface = Logical True
oExpensive and unnecessary! Minimum Height = Real 5.0
Correct Surface Mask = String "Glaciated"
* We can apply to each extruded node 1D mapping Dot Product Tolerance = 1.0e-3

oVery cheap!

! Allocate some fields here
Variable = MeshUpdate

Exported Variable 1 = "bedrockDEM"
Exported Variable 1 Mask = String "BedRock"
Exported Variable 2 = "surfaceDEM1995"

Exported Variable 2 Mask = String "Surface"
End




Using extruded structure for mapping

* We may perform various operations
along the extruded 1D lines

oComputation of height & depth
oComputation of integrals over the depth etc.

+

: StructuredProjectToPlane

! Computes height and depth assuming an
! extruded mesh.
Solver 3
Exec Solver = "before simulation"
Equation = "HeightDepth"
Procedure = "StructuredProjectToPlane"
"StructuredProjectToPlane"
Active Coordinate = Integer 3
Operator 1 = depth
Operator 2 = height
End




New Stokes solver: IncompressibleNSVec {

csc

* FlowSolve is one of the oldest modules in Elmer

oHas a ot of extra baggage B S

! dBasisdxVec(l:ngp,l:ntot,i), dBasisdxVec(l:ngp,l:ntot,j), weight c, stif®

H =1: H i% d(1l: ,1: 1,3
oCannot ideally utilize modern CPU architectures 0 e
END DO
END IF
*IncompressibleNSVec is fresh out of the oven 5 (cadevezsion) Tz
! b(u,q) = (u, grad q) part
DO i = 1, dim
CALL Li F _UdotV(ngp, ntot, elemdim, &
olncludes vectorization and threading e ! tTY! e, Belttora(s, , Lusote))
. . . StiffOrd(:,:,dofs,i) = transpose(stifford(:,:,i,dofs))
oTakes use of code modernination in many places 0 D0
. . . DO i = 1, dim
oUnfortunately vectorization and threading do not make the CALL Linearforns UdotV(ngp, ntot, elemdim, & _
dBasisdxVec(:, :, i), BasisVec, -detJVec, StiffOrd(:,:,i,dofs))
mOdU|eS prettler Stifford(:,:,dofs,i) = transpose(stifford(:,:,i,dofs))
END DO
END IF
* Performance boost depends heavily on the length of | Masses (use SYMELIY) @ aloha . u) - u .dot. (grad u)
IF ( .NOT. StokesFl ) THEN
the Ve CtO rS CALL Linear}:?oi:ls_ggotU(ngp, ntot, elemdim, BasisVec, DetJVec, VelocityMass, rhovi
Sec)
. . . . ! Scatter to the usual local mass matrix
oNumber of Gaussian integration points 201 =1, dim
mass(i::dofs, i::dofs) = mass(i::dofs, i::dofs) + VelocityMass(l:ntot, l:ntot)
END DO
!CALL LinearForms_UdotU(ngp, ntot, elemdim, BasisVec, DetJVec, PressureMass, -kai
Sppavec)
Imass(dofs::dofs, dofs::dofs) = mass(dofs::dofs, dofs::dofs) + PressureMass(l:nt#
Sot,1l:ntot)
3:___11 cI)m::mnxn:ess:i.l-:ll.eMSVec.l=90 28% L370 Git-devel (F90 AC Abbrev) |
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Motivation for new Stokes Solver

 New computer architectures use SIMD SIMD | Instruction Pool
(=vector) units to do fast computations
P _
* If you (on an Intel chip) don't utilize this,
you a priori loose % of your performance @ =
: : O -
* FEM: assembly = creating the matrix o .
3 2
solution = solving it e é
* Until recently, assembly procedures in
Elmer did not utilize SIMD \ )

* New Stokes solver does!
By Vadikus - Own work, CC BY-SA 4.0,

° Gains depend on the number Of https://commons.wikimedia.org/w/index.php?curid=39715273
integration points




Comparison vectorised/legacy Solver using Intel VTune
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Using the new Stokes Solver

* We have to specify that this is a Stokes model

olnertia terms neglected

* We can start with constant viscosity

oEliminates need for initial guess

* Number of integration points affects the accuracy
of discretization

oHas significant effect on performance!

* We may use different solution techniques for
linear solver

o lterative method
o Direct metod
oBlock preconditioning (next topic)

* Nonlinear solver takes use of Newton’s
linearization

o Started with Picard iteration that has larger radius of
convergence

Solver 4

Equation = "Stokes-Vec" +
Procedure = "IncompressibleNSVec" "IncompressibleNSSolver/s.
Flow Model = Stokes

! 1st iteration viscosity is constant
Constant-Viscosity Start = Logical True

(on wedges)
21,

! Accuracy of numerical integration
Number of Integration Points Integer 44 !

28, 44, 64,
! Tterative approach:

Linear System Solver Iterative

Linear System Iterative Method = "GCR"

Linear System Max Iterations = 500

Linear System Convergence Tolerance 1.0E-08

Linear System Abort Not Converged False

Linear System Preconditioning "ILul"

Linear System Residual Output 10

! Direct approach (as alternative to above):
!Linear System Solver Direct
!Linear System Direct Method

MUMPS

!Non-linear iteration settings:
Nonlinear System Max Iterations 50
Nonlinear System Convergence Tolerance
Nonlinear System Newton After Iterations
Nonlinear System Newton After Tolerance
Nonlinear System Consistent Norm True
! Nonlinear System Relaxation Factor
End

1.0e-5
10
1.0e-1

1.00



Material law for Ice J

csc

Material 1
* Ice is a shear-thinning fluid and requires a Name = "Ice"

. . . Density = Real $rhoi
complicated viscosity model

_ _ _ . . ! First viscosity with newtonian fluid
* Plain viscosity is used in the 1st solution if | happens to give velocities of proper size

Viscosity = Real 1.0
requested recostEy = mes

! Nonnewtonian viscosity

Viscosity Model = String Glen

Glen Exponent = Real 3.0

Critical Shear Rate = Real 1.0E-10

! Paterson value in MPa”-3a”-1

Limit Temperature = Real -10.0

Rate Factor 1 = Real S$SAl

Rate Factor 2 = Real $A2

Activation Energy 1 = Real $Q1

Activation Energy 2 = Real $Q2

Glen Enhancement Factor = Real 1.0

Relative Temperature = Real $Tc
End




Block preconditioning

* In parallel runs a central challenge is to have good
parallel preconditioners

* This problem is increasingly difficult for PDEs with vector fields

oNavier-Stokes, elasticity, acoustics, ...
o Strongly coupled multiphysics problems

* Preconditioner need not to be just a matrix, it can be a procedure!

* Idea: Use as preconditioner a procedure where the components are
solved one-by-one and the solution is used as a search direction in an
outer Krylov method

* Number of outer iterations may be shown to be bounded

* Individual blocks may be solved with optimally scaling methods

oMultilevel methods

csc

Preconditioner (from right):

Instead of solving
Kx=b

Identify a preconditioner
P which makes solution
of

KP~!z =b,

with z=Px easier than the
original problem.




Block precontioning

* Given a block system

Ky - K J[x ] [ b1]
Knvi - Ky | xy | by |
* Block Gauss-Seidel Block Jacobi
K11 0 o --- K11 0 0

P=1| Ky Ky 0 --- P= 0 Ky O

* Preconditioner is the operator which produces the new search direction s®

e Use GCR to minimize the residual
over the space

b — Kx®|
Vi = x9 4 span{sV s .. s}

23 28.10.2019



GCR with general search directions to solve Ku = f

k=0
r) = f — Kul®)
while (||[r'®)|| < TOL||f|| and k < m)
Generate the search direction s(¥+1)
v(k+1) — Kg(k+1)
doj=1.k
vkl — y(k+1) _ (vUJ:U(Hl))vU)
s(k+1) — g(k+1) _ (y(0) y(k+1)sl)
end do
v(k+1) — U(k+1)/|‘v(k+1)”
glk+1) — S(k+1)/”,u.{k+1)”
ukt1) = y(0) 4 (y(ktD) p(R)ygk+1)
plkt1) — (k) _ (u(“l), r(k)>u(k+1)
k=k+1
end while

24 28.10.2019



Block preconditioner for the Stokes problem J

 Each nonlinear step requires solving the Stokes problem Finits Elonionts ard

Fast Iterative Solvers

T With Applications in
A B V F Incompressible Fluid Dynamics
p— ccond Edition
HOWARD ELMAN

DAVID SILVESTER
ANDY WATHEN

* Note that here Cis result of stabilization, with suitable choice of
basis vectors it can also be zero. The preconditioner is of the form

A B’
leo Q]

* An optimal choice of Q corresponds to the Schur complement.
Usual choice is

AN

OXFORD SCIENCE PUBLICATIONS

H. Elman, D. Silvester, A. Wathen,
-1 Finite Elements and Fast Iterative Solvers: with
Q - E M', o o o o o o
Applications in Incompressible Fluid Dynamics,

where M is the mass matrix and € is the viscosity from previous OUP Oxford, 2005.

iteration.

* We may split A to 3x3 submatrix also, or not

27 28.10.2019



Block preconditioner: Weak scaling of 3D driven-cavity
T

3473 171,500 44.2

43”3 340,736 32 60.3

5473 665,500 64 66.7

6873 1,314,036 128 73.6

8673 2,634,012 256 83.5

1083 5,180,116 512 102.0

1323 9,410,548 1024 106.8

Velocity solves with Hypre: CG + BoomerAMG preconditioner for the
3D driven-cavity case (Re=100) on Cray XC (Sisu). O(~1.14)
Simulation Mika Malinen, CSC, 2013.




Using block solver strategy with new Stokes module J

!' Setting to choose block solver strategy

* We choose overall block splitting and Linear System Solver = "Block”
Block Gauss-Seidel = Logical True
Strategy Block Scaling = Logical False
Block Preconditioner = Logical True
; ! Block Structure(4) = Integer 1 1 1 2
* GCR is recommended for outer level Block Order (1)~ Theeger 15 3 4

o Does not require preconditioner to be exact!
! Linear system solver for outer loop

* Different strategies may basically be used for Outer: Linear System Solver = "Iterative"
. . Outer: Linear System Iterative Method = GCR
different blocks for each inner system Outer: Linear System GCR Restart — 250
o Blocks 1,2,3 here associated with velocity components Outer: Linear System Residual Output = 25
1,2,3 Outer: Linear System Max Iterations = 200
e Outer: Linear System Abort Not Converged = False
o Block 4 associated with pressure (preconditioned with Outer: Linear System Convergence Tolerance = le-8

scaled mass matrix is suggested by EIman)
$blocktol = 0.001

® The strategy I’eCideS nowadays almOSt Complet8|y block 11: Linear System Convergence Tolerance = Sblocktol
in the lib f t] lit FE| block 11: Linear System Solver = "iterative"
In € library functionality o mer block 11: Linear System Scaling = false
o Makes dedicated block-preconditioned ParStokes block 11: Linear System Preconditioning = ilu
obsolite block 11: Linear System Residual Output = 100
) ) ) ) block 11: Linear System Max Iterations = 500
<3Thssnategy|snotavaﬂaue|nFRNNSoWer block 11: Linear System Iterative Method = idrs
°Iﬂote:theIoenefnscyfoptwnalscahngIoeconwe block 22: Linear System Convergence Tolerance = S$blocktol

obvious when the size of the problem grows



+

Advecting with the ice flow: ParticleAdvector
Solver 5
- : : Equation = ParticleAdvector
Usesabﬂﬂytofo”ovaarudes|nthe Procedure = "ParticleAdvector" "ParticleAdvector"
mesh ! Initialize particles at center of elements

Advect Elemental = Logical True
! Timestepping strategy

Particle Dt Constant = Logical False
* Particles are made to travel backward in Max Timestep Intervals = Integer 1000
Timestep Unisotropic Courant Number = 0.25
Max Timestep Size = 1.0e3

* Values may be integrated along the path Max Integration Time = Real 1.0ed
! Integration forward in time

or registered at the initial location Runge Kutta = Logical False

Velocity Gradient Correction = Logical True
Velocity Variable Name = String "Flow Solution"
! The internal variables for this solver
Variable 1 = String "Particle Distance"
Variable 2 = String "Particle Time Integral"
! The field variables being advected
Variable 3 = String "Coordinate 1"
Result Variable 3 = String "Advected 2"
End

olnitially implemented for true physical
particles

time along the flowlines
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Distance travelled Initial height of ice



Running the case 1

*|n serial:
ElmerSolver mlb.sif

*In parallel, here with 4 processes:
ElmerGrid 2 2 outline62 1c50 -partdual -metisrec 4
mplirun —-np 4 ElmerSolver mpi mlb.sif

*An my laptop the basic case takes




Things to test by yourself —

csc

* Running the initial case (cl50)
* Runnig the smaller/larger cases (cl75, cl25)

* Altering number of integration points

oDoes it have an affect on simulationresults: ...,21, 28, 44, 64, ..

* Trying out different linear system strategies

oGCR vs. block precondtioner vs. direct solver
omlb_linsys.sif contains linear system recipes with “include linsys.sis”

* Trying effect of Courant number in particle advection

* You may turn off ParticleAdvector off if not needed as it uses a lot of time

oExec Solver = never




