Elmer/Ice Course - MLB

https://wgms.ch/products_ref_glaciers/midtre -lovenbreen-svalbard/

Reconstructing Climate: Midtre Lovénbreen, Svalbard

Pictures and data provided by Jack Kohler, NPI, NOR (2005 DEM from NERC)

- DEM's obtained at different times
- Using 2 consecutive time-levels
- Obtaining averaged DEM
- $\quad h_{2000}=\left(h_{2005}-h_{1995}\right) / 2$
- and local elevation change

$$
\left.\frac{\partial h}{\partial t}\right|_{2000}=\left(h_{2005}-h_{1995}\right) / 11
$$

- Elmer/Ice full Stokes diagnostic simulations $\rightarrow \boldsymbol{u}=(u, v$
- Spatial distribution of SMB:

$$
\mathrm{SMB}=\left(\frac{\partial h}{\partial t}+u \frac{\partial h}{\partial x}+v \frac{\partial h}{\partial y}-w\right)
$$

Välisuo, I., T. Zwinger and J. Kohler (2017): Inverse solution of surface mass balance of Midtre Lovénbreen, Svalbard, Journal of Glaciology, 1-10, doi:10.1017/jog.2017.26.

This exercise

- We take the DEM of 1995

- We will run a diagnostic simulation on the given geometry
- Emphasis on some special features
o3D mesh generation using extrusion - Restart from 2D data
- Utilizing extruded structure in mesh deformation - Vectorized \& threaded version of Navier-Stokes - Block preconditioning
- Semilagrangian solver for purely convective transport i.e. of age
- Users are free to try out different things
- Solution strategies
- Parallel runs

○...
 o...

Finalizing mesh using internal extrusion

- The mesh is finalized in memory starting from 2D footprint
- Here the extruded height does not play any role oMesh is further adapted to follow true bottom and top

```
Simulation
    Extruded Mesh Levels = Integer 9
    Extruded Max Coordinate = Real 1000
```


Internal mesh extrusion

- Start from an initial 2D (1D) mesh and then extrude into 3D (2D) oMesh density may be given a geometric ratio and even an arbitrary function
- Implemented also for partitioned meshes
oExtruded lines belong to the same partition by construction!
- Effectively eliminates meshing bottle-necks
- Side boundaries get a $B C$ constraint so that
$02 D$ constraint $B C=1 D$ contraint $B C+$ offset ooffset is set if the baseline BCs are preserved
- Top and bottom boundaries get the next free BC constraint indexes
- Note thet the BCs refer directly to the "Boundary Condition"
o"Target Boundaries" is used only when reading in the mesh in the 1st place and they are not available any more at this stage


```
Extruded Mesh Levels = 21
Extruded Mesh Density =
    Variable Coordinate 1
    Real MATC "1+10*tx"
```


Restart from 2D data: Mesh2MeshSolver

- We can take 2D data and interpolate it to top/bottom layers of 3D mesh
O2D interpolatio task with z-coordinate neglected
- Makes workflow easier since the data needs to be interpolated only once to an Elmer mesh
- 2D file is read in full to all processes
oSame restart file can be used for any number of cores!
- We have precomputed restart files for you!

```
Solver 1
    Exec Solver = before all
    Equation = "InterpSolver"
    Procedure = "Mesh2MeshSolver" "Mesh2MeshSolver"
    ! Restart is here always from a serial mesh
    Mesh = -single $restartdir
    Restart File = $restartfile
    ! We use the primary 2D mesh with local copy
    Mesh Enforce Local Copy = Logical True
    ! These are the variables for restart
    Restart Position = Integer 0
    Restart Variable 1 = String "bedrockDEM"
    Restart Variable 2 = String "surfaceDEM1995"
    ! Ensures that we perform interpolation on plane
    Interpolation Passive Coordinate = Integer 3
End
```


Utilizing extruded structure in mesh deformation: StructuredMeshMapper

- The shape of the mesh needs to be accomodated
- Bottom of ice follows bedrock
- Top of ice follows ice surface
- This could be done using generic 3D techniques - MeshSolve (version of linear elasticity equation) oExpensive and unnecessary!
- We can apply to each extruded node 1D mapping o Very cheap!


```
! Maps the constant-thickness mesh
! between given bedrock and surface topology
Solver 2
    Exec Solver = "before simulation"
    Equation = "MapCoordinate"
    Procedure = "StructuredMeshMapper" "StructuredMeshMappe
    Active Coordinate = Integer 3
    Displacement Mode = Logical False
    Correct Surface = Logical True
    Minimum Height = Real 5.0
    Correct Surface Mask = String "Glaciated"
    Dot Product Tolerance = 1.0e-3
    ! Allocate some fields here
    Variable = MeshUpdate
    Exported Variable 1 = "bedrockDEM"
    Exported Variable 1 Mask = String "BedRock"
    Exported Variable 2 = "surfaceDEM1995"
    Exported Variable 2 Mask = String "Surface"
End
```


Using extruded structure for mapping: StructuredProjectToPlane

- We may perform various operations along the extruded 1D lines
oComputation of height \& depth oComputation of integrals over the depth etc.

```
! Computes height and depth assuming an
! extruded mesh.
Solver 3
    Exec Solver = "before simulation"
    Equation = "HeightDepth"
    Procedure = "StructuredProjectToPlane"
"StructuredProjectToPlane"
    Active Coordinate = Integer 3
    Operator 1 = depth
    Operator 2 = height
End
```


New Stokes solver: IncompressibleNSVec

- FlowSolve is one of the oldest modules in Elmer
- Has a lot of extra baggage
oCannot ideally utilize modern CPU architectures
- IncompressibleNSVec is fresh out of the oven
olncludes vectorization and threading
-Takes use of code modernination in many places
oUnfortunately vectorization and threading do not make the modules prettier
- Performance boost depends heavily on the length of the vectors
oNumber of Gaussian integration points

Motivation for new Stokes Solver

- New computer architectures use SIMD (=vector) units to do fast computations
- If you (on an Intel chip) don't utilize this, you a priori loose $3 / 4$ of your performance
- FEM: assembly = creating the matrix solution = solving it
- Until recently, assembly procedures in Elmer did not utilize SIMD
- New Stokes solver does!
- Gains depend on the number of integration points

By Vadikus - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=39715273

Comparison vectorised/legacy Solver using Intel VTune


```
Solver 4
    Equation = "Stokes-Vec"
        &-
    Procedure = "IncompressibleNSVec" "IncompressibleNSSolver""
    Flow Model = Stokes
    ! 1st iteration viscosity is constant
    Constant-Viscosity Start = Logical True
    ! Accuracy of numerical integration (on wedges)
    Number of Integration Points = Integer 44 ! 21, 28, 44, 64, ...
    ! Iterative approach:
    Linear System Solver = Iterative
    Linear System Iterative Method = "GCR"
    Linear System Max Iterations = 500
    Linear System Convergence Tolerance = 1.0E-08
    Linear System Abort Not Converged = False
    Linear System Preconditioning = "ILU1"
    Linear System Residual Output = 10
    ! Direct approach (as alternative to above):
    !Linear System Solver = Direct
    !Linear System Direct Method = MUMPS
    !Non-linear iteration settings:
    Nonlinear System Max Iterations = 50
    Nonlinear System Convergence Tolerance = 1.0e-5
    Nonlinear System Newton After Iterations = 10
    Nonlinear System Newton After Tolerance = 1.0e-1
    Nonlinear System Consistent Norm = True
    ! Nonlinear System Relaxation Factor = 1.00

\section*{Material law for Ice}

- Ice is a shear-thinning fluid and requires a complicated viscosity model
- Plain viscosity is used in the 1st solution if requested

```

Material 1
Name = "Ice"
Density = Real \$rhoi
! First viscosity with newtonian fluid
! happens to give velocities of proper size
Viscosity = Real 1.0
! Nonnewtonian viscosity
Viscosity Model = String Glen
Glen Exponent = Real 3.0
Critical Shear Rate = Real 1.0E-10
! Paterson value in MPa^-3a^-1
Limit Temperature = Real -10.0
Rate Factor 1 = Real \$A1
Rate Factor 2 = Real \$A2
Activation Energy 1 = Real \$Q1
Activation Energy 2 = Real \$Q2
Glen Enhancement Factor = Real 1.0
Relative Temperature = Real \$Tc
End

```

\section*{Block preconditioning}
- In parallel runs a central challenge is to have good parallel preconditioners
- This problem is increasingly difficult for PDEs with vector fields - Navier-Stokes, elasticity, acoustics,... - Strongly coupled multiphysics problems
- Preconditioner need not to be just a matrix, it can be a procedure!
- Idea: Use as preconditioner a procedure where the components are solved one-by-one and the solution is used as a search direction in an outer Krylov method
- Number of outer iterations may be shown to be bounded
- Individual blocks may be solved with optimally scaling methods oMultilevel methods

Preconditioner (from right):
Instead of solving
\[
K x=\mathbf{b}
\]

Identify a preconditioner \(P\) which makes solution of
\[
\mathrm{KP}^{-1} \mathbf{z}=\mathbf{b}
\]
with \(z=P x\) easier than the original problem.

\section*{Block precontioning}
- Given a block system
\[
\left[\begin{array}{ccc}
\mathrm{K}_{11} & \cdots & \mathrm{~K}_{1 N} \\
& \cdots & \mathrm{~K}_{N N}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathrm{~K}_{N 1}
\end{array} \cdots=\left[\begin{array}{c}
\mathbf{b}_{1} \\
\vdots \\
\mathbf{x}_{N}
\end{array}\right]\right.
\]
- Block Gauss-Seidel
Block Jacobi
\[
\mathrm{P}=\left[\begin{array}{cccc}
\mathrm{K}_{11} & \mathbf{0} & \mathbf{0} & \cdots \\
\mathrm{~K}_{21} & \mathrm{~K}_{22} & \mathbf{0} & \cdots \\
\cdots & & &
\end{array}\right]
\]
\[
\mathrm{P}=\left[\begin{array}{cccc}
\mathrm{K}_{11} & 0 & 0 & \cdots \\
0 & \mathrm{~K}_{22} & 0 & \cdots \\
\cdots & & &
\end{array}\right]
\]
- Preconditioner is the operator which produces the new search direction \(s^{(k)}\)
- Use GCR to minimize the residual
over the space
\[
\begin{array}{r}
\left\|\mathbf{b}-\mathbf{K} \mathbf{x}^{(k)}\right\| \\
\mathcal{V}_{k}=\mathbf{x}^{(0)}+\operatorname{span}\left\{\mathbf{s}^{(1)}, \mathbf{s}^{(2)}, \ldots, \mathbf{s}^{(k)}\right\}
\end{array}
\]

GCR with general search directions to solve \(K u=f\)
\[
\begin{aligned}
& k=0 \\
& \mathbf{r}^{(k)}=\mathbf{f}-\mathbf{K} \mathbf{u}^{(k)}
\end{aligned}
\]
\[
\text { while }\left(\left\|\mathbf{r}^{(k)}\right\|<T O L\|\mathbf{f}\| \text { and } k<m\right)
\]

Generate the search direction \(\mathbf{s}^{(k+1)}\)
\[
\mathbf{v}^{(k+1)}=\mathbf{K} \mathbf{s}^{(k+1)}
\]
\[
\text { do } j=1, k
\]
\[
\mathbf{v}^{(k+1)}=\mathbf{v}^{(k+1)}-\left\langle\mathbf{v}^{(j)}, \mathbf{v}^{(k+1)}\right\rangle \mathbf{v}^{(j)}
\]
\[
\mathbf{s}^{(k+1)}=\mathbf{s}^{(k+1)}-\left\langle\mathbf{v}^{(j)}, \mathbf{v}^{(k+1)}\right\rangle \mathbf{s}^{(j)}
\]
end do
\[
\mathbf{v}^{(k+1)}=\mathbf{v}^{(k+1)} /\left\|\mathbf{v}^{(k+1)}\right\|
\]
\[
\mathbf{s}^{(k+1)}=\mathbf{s}^{(k+1)} /\left\|\mathbf{v}^{(k+1)}\right\|
\]
\[
\mathbf{u}^{(k+1)}=\mathbf{u}^{(k)}+\left\langle\mathbf{v}^{(k+1)}, \mathbf{r}^{(k)}\right\rangle \mathbf{s}^{(k+1)}
\]
\[
\mathbf{r}^{(k+1)}=\mathbf{r}^{(k)}-\left\langle\mathbf{v}^{(k+1)}, \mathbf{r}^{(k)}\right\rangle \mathbf{v}^{(k+1)}
\]
\[
k=k+1
\]
end while

\section*{Block preconditioner for the Stokes problem}
- Each nonlinear step requires solving the Stokes problem
\[
\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{T} \\
\mathbf{B} & \mathbf{C}
\end{array}\right]\left[\begin{array}{l}
\mathbf{V} \\
\mathbf{P}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{F} \\
\mathbf{G}
\end{array}\right]
\]
- Note that here C is result of stabilization, with suitable choice of basis vectors it can also be zero. The preconditioner is of the form
\[
\mathrm{P}=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{T} \\
\mathbf{0} & \mathbf{Q}
\end{array}\right]
\]

- An optimal choice of Q corresponds to the Schur complement.

Usual choice is
\[
\mathbf{Q}=\varepsilon^{-1} \mathbf{M}
\]
where M is the mass matrix and \(\varepsilon\) is the viscosity from previous iteration.
- We may split A to \(3 \times 3\) submatrix also, or not
H. Elman, D. Silvester, A. Wathen, Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics, OUP Oxford, 2005.

Block preconditioner: Weak scaling of 3D driven-cavity
\begin{tabular}{|l|l|l|l|}
\hline Elems & Dofs & \#procs & Time (s) \\
\hline \(34^{\wedge} 3\) & 171,500 & 16 & 44.2 \\
\hline \(43^{\wedge} 3\) & 340,736 & 32 & 60.3 \\
\hline \(54^{\wedge} 3\) & 665,500 & 64 & 66.7 \\
\hline \(68^{\wedge} 3\) & \(1,314,036\) & 128 & 73.6 \\
\hline \(86^{\wedge} 3\) & \(2,634,012\) & 256 & 83.5 \\
\hline \(108^{\wedge} 3\) & \(5,180,116\) & 512 & 102.0 \\
\hline \(13^{\wedge} 3\) & \(9,410,548\) & 1024 & 106.8 \\
\hline
\end{tabular}


Velocity solves with Hypre: CG + BoomerAMG preconditioner for the 3D driven-cavity case ( \(\mathrm{Re}=100\) ) on Cray XC (Sisu).
O(~1.14)

Simulation Mika Malinen, CSC, 2013.

\section*{Using block solver strategy with new Stokes module}
- We choose overall block splitting and strategy
- GCR is recommended for outer level
- Does not require preconditioner to be exact!
- Different strategies may basically be used for different blocks for each inner system - Blocks 1,2,3 here associated with velocity components 1,2,3
- Block 4 associated with pressure (preconditioned with scaled mass matrix is suggested by Elman)
- The strategy recides nowadays almost completely in the library functionality of Elmer
- Makes dedicated block-preconditioned ParStokes obsolite
- This strategy is not available in FlowSolver
- Note: the benefits of optimal scaling become obvious when the size of the problem grows
```

```
! Setting to choose block solver strategy
```

```
! Setting to choose block solver strategy
    Linear System Solver = "Block"
    Linear System Solver = "Block"
    Block Gauss-Seidel = Logical True
    Block Gauss-Seidel = Logical True
    Block Scaling = Logical False
    Block Scaling = Logical False
    Block Preconditioner = Logical True
    Block Preconditioner = Logical True
! Block Structure(4) = Integer 1 1 1 2
! Block Structure(4) = Integer 1 1 1 2
    Block Order(4) = Integer 1 2 3 4
    Block Order(4) = Integer 1 2 3 4
! Linear system solver for outer loop
! Linear system solver for outer loop
Outer: Linear System Solver = "Iterative"
Outer: Linear System Solver = "Iterative"
Outer: Linear System Iterative Method = GCR
Outer: Linear System Iterative Method = GCR
Outer: Linear System GCR Restart = 250
Outer: Linear System GCR Restart = 250
Outer: Linear System Residual Output = 25
Outer: Linear System Residual Output = 25
Outer: Linear System Max Iterations = 200
Outer: Linear System Max Iterations = 200
Outer: Linear System Abort Not Converged = False
Outer: Linear System Abort Not Converged = False
Outer: Linear System Convergence Tolerance = 1e-8
Outer: Linear System Convergence Tolerance = 1e-8
$blocktol = 0.001
$blocktol = 0.001
block 11: Linear System Convergence Tolerance = $blocktol
block 11: Linear System Convergence Tolerance = $blocktol
block 11: Linear System Solver = "iterative"
block 11: Linear System Solver = "iterative"
block 11: Linear System Scaling = false
block 11: Linear System Scaling = false
block 11: Linear System Preconditioning = ilu
block 11: Linear System Preconditioning = ilu
block 11: Linear System Residual Output = 100
block 11: Linear System Residual Output = 100
block 11: Linear System Max Iterations = 500
block 11: Linear System Max Iterations = 500
block 11: Linear System Iterative Method = idrs
block 11: Linear System Iterative Method = idrs
block 22: Linear System Convergence Tolerance = $blocktol
```

block 22: Linear System Convergence Tolerance = \$blocktol

```
```

Outer: Linear System Residual Output 25

```
```

Outer: Linear System Residual Output 25

```
...

\section*{Advecting with the ice flow: ParticleAdvector}
```

Solver 5
Equation = ParticleAdvector
Procedure = "ParticleAdvector" "ParticleAdvector"
! Initialize particles at center of elements
Advect Elemental = Logical True
! Timestepping strategy
Particle Dt Constant = Logical False
Max Timestep Intervals = Integer 1000
Timestep Unisotropic Courant Number = 0.25
Max Timestep Size = 1.0e3
Max Integration Time = Real 1.0e4
! Integration forward in time
Runge Kutta = Logical False
Velocity Gradient Correction = Logical True
Velocity Variable Name = String "Flow Solution"
! The internal variables for this solver
Variable 1 = String "Particle Distance"
Variable 2 = String "Particle Time Integral"
! The field variables being advected
Variable 3 = String "Coordinate 1"
Result Variable 3 = String "Advected z"
End

```



Distance travelled


Initial height of ice

\section*{Running the case}
- In serial:

ElmerSolver mlb.sif
- In parallel, here with 4 processes:

ElmerGrid 22 outline62_lc50 -partdual -metisrec 4
mpirun -np 4 ElmerSolver_mpi mlb.sif
- An my laptop the basic case takes

\section*{Things to test by yourself}
- Running the initial case (Cl50)
- Runnig the smaller/larger cases (cl75, cl25)
- Altering number of integration points
- Does it have an affect on simulation results: ...,21, 28, 44, 64,..
- Trying out different linear system strategies
o GCR vs. block precondtioner vs. direct solver
omlb_linsys.sif contains linear system recipes with "include linsys.sis"
- Trying effect of Courant number in particle advection
-...
- You may turn off ParticleAdvector off if not needed as it uses a lot of time oExec Solver = never```

