)|
)lll]()l()
1010101011110101,

10
)I[H[)Jr)mluu

CSC

*

CSscC

New Developments for EImer/ice

Thomas Zwinger, Mika Malinen, Juha
Ruokolainen and Peter Raback

CSC —IT Center for Science Ltd.
Espoo,
Finland

CscC

Gaél Durand, Fabien Gillet-Chaulet and
Lionel Favier

LGGE, UJF-Grenoble, France
Jonas Thies
Univ. Uppsala, Sweden

CscC

¢ New elmerice Installation package

v New features for glaciological
simulations:
— New implementation of Glen’s flow law
— Internal extrusion
— Block pre-conditioner &}ﬁ
— Mass-conserving normals W U
@ Preliminary results AAIS \\%

y S
+ . ,
. .

NP/ ACE
v Elmer ~300 000 lines of mixed F90, C and
C** code

v Elmer/lce ~20 000 lines add-on to Elmer

¢ Main developments in algorithms, parallel
performance enhancement driven by
Elmer

— Most work is done within CSC

— Current developments:
v OpenMP multi-threading, hybrid MPI-OpenMP
v Intel PSI porting (many-core systems)
v Sliding mesh boundaries

CScC

v SourceForge (SF):

¢ New SVN address:
— Checkout without SF-ID:

svn co svn://svn.code.sf.net/p/elmerfem/code/trunk/

— Checkout with SF-ID (needs password):

svn checkout --username=sflogin
svn+ssh://sflogin@svn.code.sf.net/p/elmerfem/code
/trunk

— Elmer/Ice is residing in a sub-directory. trunk/elmerice

http://sourceforge.net/projects/elmerfem/

CScC

v Prerequisites:
— existing Elmer installation
— UNIX/Linux system
— (GNU)-make
v Either define ELMERICE HOME as the Installation
path

v Preferably: have ELMER HOME defined and

Elmer/Ilce then is installed In
$ (ELMER HOME) /share/elmersolver

— Mind that you have to have rights to write the
SELMER HOME-tree

CScC

¢ Remove leftovers from previous builds:
make purge

o Compile: make compile

v Install: make install

— If you need to use sudo option, use -E to copy the
environment.

CScC

v Installation of two additional shared objects:

—ElmerIceSolvers. so: contains all solver
subroutines (physical models)

— ElmerIceUSF. so: contains all user functions
(boundary conditions, etc.)

v Call syntax:

— Procedure = File "ElmerIceSolvers"
"NameSolver"

— Description of all Solvers on Wiki page

http://elmerice.elmerfem.org/wiki/doku.php?id=solvers
http://elmerice.elmerfem.org/wiki/doku.php?id=solvers

o Until recently:
— used the Elmer built-in power law and
provided the temperature-dependent
part at the nodes only (MATC function)
¢ New Viscosity law in Elmer:
— Viscosity model Glen in Material section

— Evaluates all variable dependencies at
Integration points
— Increased stability — Newton method :
works

— Documentation in Elmer/lce Wiki

n=L(BA)~nell

CScC

~-

CScC

= (BAY- el

Viscosity Model = String "Glen"
'Viscosity has to be set to a dummy value
' Use “sane” value for ParStokes

Viscosity = Real
$1.0E13*%365.25*24*3600*1.0E-06

Glen Exponent = Real 3.0

Critical Shear Rafigr)y= Bead (LoPrRald) — 1)
! Rate factors

Rate Factor 1 = Real 1.258el3

Rate Factor 2 = Real 6.046e28

Activation Energy 1 = Real 60e3

Activation Energy 2 = Real 139e3

CScC

A(T) = Agexp (~Q/R(T,0) - T"))

! the temperature to switch between the

! two regimes 1n the flow law

Limit Temperature = Real -10.0
Temperature Field Variable = String "Temp
Homologous™"

! In case there 1s no temperature varilable
'Constant Temperature = Real -10.0

CcscC

Internal mesh extrusion

o Until recently:
— Build 2D footprint (optimize footprint)
— Extrude externally (e.g. ExtrudeMesh)
— Split resulting 3D mesh into partitions

— Disadvantages:
v 3D bottleneck
v limited in size
« Not able to utilize
vertical columns

CscC

@ New approach:
— Create footprint (like earlier)
— Partition footprint
— The rest is done inside Elmer

v Internal extrusion:
— Keyword in Simulation:
Extruded Mesh Levels=10
— This extrudes the footprint (here in 10 levels) to
unit-neight
— Still need to prescribe the bedrock and surface
topography

CScC

¢ Reading NetCDF information:

— GridDataReader Under elmerice/netcdf2
(earlier under misc-tree)

— Naturally, needs working NetCDF installation

Solver 1
Equation = “DataReader"
Exec Solver = "Before All"
Procedure = "GridDataReader" "GridDataReader"

Filename = File "netcdf/ALBMAPvl.nc"

X Name = String "x1"

Y Name = String "yl"

!--- Interpolation variable tolerances
X Epsilon = Real 1.0e-2

Y Epsilon = Real 1.0e-2

Epsilon Time = Real 0.01

!-—-- offsets and stretching
Interpolation Bias = Real 0.0
Interpolation Multiplier = Real 1.0

CSscC

Internal mesh extrusion

¢ Reading NetCDF information:

Is Time Counter = Logical True

Variable 1 = usrf ! upper surface
Variable 2 = 1lsrf2 ! lower surface
Valid Min Value 1 = Real 0.0
Valid Min Value 2 = Real -3000.0

! Scales the Elmer grid to match the
! NetCDF grid - usually not a good idea

Enable Scaling = Logical False

End 0 801.7 1603 2405 ?207 4008

CSscC

Internal mesh extrusion

v Mapping the surfaces:
StructuredMeshMapper

I

(V4
7

4;’25
i

e
RV
ST
s
X
i

i
=
.

Solver 5
Exec Solver = "Before Simulation"
Equation = "MapCoordinate"
Procedure = "StructuredMeshMapper" "StructuredMeshMapper"
Active Coordinate = Integer 3
Dot Product Tolerance = Real 0.0001
Minimum Mesh Height = Real 100.0
End

Boundary Condition 1

Name = "Bottom"

Bottom Surface = Equals lsrf2
End

Boundary Condition 3

Name = "Surface"
Top Surface = Equals usrf
End

CscC

¢ Mapping the surfaces:
StructuredMeshMapper

v Can be used also In
prognostic runs:

— Uses free surface variable
for mapping the upper
surface

— Also possible to be used for
Isostacy at bedrock

— Only vertical shifting of
mesh, no solution of pseudo-
elastic problem; stability!

CScC

v Stokes equation:
— Saddle-point problem: needs stabilization

— Strong spatial variation/low-shear rate
singularity of viscosity: bad condition number

o Until recently: direct solution
— MUMPS
— Strong limits due to memory
— Not good scalablility above ~100 processes
— Need Krylov subspace solver to work

v Stokes equation: . (A B<T>) | (v)
p

B C =f

— A is similar to an elasticity problem (Navier-
equation)

— B is the discretized negative divergence

— C results from stabilization

v Strategy: use pre-conditioner and solve
with Krylov-subspace method (in our case
GCR)

CScC

k
v GCR: r=xo+ > Q;S;
=1
— Builds solution space from initial solution x,

and a series of directional updates s
— Minimizes the residual ||»| = |[K - z — f|| — min
v Block pre-conditioner: o B
— We use P instead of K K (0 M)
to get directions: P -sit1 =15

— M is a mass-matrix scaled with the element-
wise fluidity (instead of exact pressure-Schur
complement)

CScC

v Block pre-conditioner:

— Remaining issue: Need approximated inverse
of Pto get a solutionof p.s, , =,

(A B
=5)
— Advantage: can get separate solution for A-

block and M

— Elmer provides interfaces to different libraries
(Hypre, Trilinos) to get this solved

CScC

v How to use It?

— Source code Is In
trunk/fem/src/modules/ParStokes.src

— Copy the code to your directory (possibly rename
the suffix to . £90, as some Fortran compilers are
picky about this) and then simply compile it:
elmerf90 ParStokes.f90 -0
ParStokes.so

— Create a dummy routine (see next slide) for the
blocks and compile it:

elmerf90 DummySolver.f90 -o
DummySolver.so

~-

CscC

SUBROUTINE DummyRoutine (Model, Solver,dt,TransientSimulation)
USE DefUtils

USE SolverUtils

USE ElementUtils

IMPLICIT NONE

TYPE (Solver t) :: Solver

TYPE (Model t) :: Model

REAL (KIND=dp) :: dt

LOGICAL :: TransientSimulation

PRINT *,”Setting up block matrix”

END SUBROUTINE DummyRoutine

~-

CScC

_ (@ B™
P={0o M

Solver 1
Equation = "Velocity Preconditioning™ o [)lJrT1rT])/

Procedure = "DummyRoutine" "DummyRoutine“ SOIVer’ JUSt to

Variable = -dofs 3 "V%

Variable Output = False allocate the

Exec Solver = "before simulation™

Element = "p:1 b:4" matrlx bIOCk
Bubbles in Global System = False ® |:)EaﬁnEBS tf]gg

Linear System Symmetric = True

Linear System Scaling = True SOIUtlon

Linear System Row Equilibration = Logical False

Linear System Solver = Iterative [)EirfirT]EBtEEFES
Linear System Iterative Method = BiCGStab that are taken

Linear System Max Iterations = 250

Linear System Preconditioning = ILUO Over by
Linear System Convergence Tolerance = 1.0e-6

Linear System Abort Not Converged = False ParStOkeS
Skip Compute Nonlinear Change = Logical True

Back Rotate N-T Solution = Logical False
Linear System Timing = True
End

~-

A BT

on@

Equation = "Pressure Preconditioning® b [)lJrT1rT])/

Procedure = "DummyRoutine" "DummyRoutine“ SOIVer’ JUSt to

Variable = -dofs 1 "pP“

Variable Output = False allocate the

Exec Solver = "before simulation™

Element = "p:1 b:4" matrlx bIOCk
Bubbles in Global System = False ® |:)EaﬁnEBS tf]gg

Solver 2

Linear System Symmetric = True

Linear System Scaling = True Solutlon

Linear System Solver = iterative

Linear System Iterative Method = CG F)EirfirT]EBtEBrfs
Linear System Max Iterations = 1000

Linear System Convergence Tolerance = 1.0e-6 that are taken
Linear System Preconditioning = Diagonal Over by

Linear System Residual Output = 10

Skip Compute Nonlinear Change = Logical True ParStOkeS
Back Rotate N-T Solution = Logical False Linear

System Timing = True
End

Solver 3

Equation = "Stokes™“

Procedure = "ParStokes" "StokesSolver™
Element = "p:1 b:4%“

Bubbles in Global System = False
Variable = FlowVar

Variable Dofs = 4

Convective = Logical False

Block Diagonal A = Logical True

Use Velocity Laplacian = Logical False

!Keywords related to the block preconditioning

Block Preconditioning = Logical True

Linear
Linear
Linear
Linear
Linear

Linear

System
System
System
System
System
System

Scaling = Logical True

Row Equilibration = Logical True
Solver = "Iterative“

GCR Restart = Integer 200

Max Iterations = 200

Convergence Tolerance = 1.0e-6

Nonlinear System Max Iterations = 100

Nonlinear System Convergence Tolerance = 1.0e-5

Nonlinear System Newton After Tolerance = 1.0e-3

End

P

~-

CScC

(TN
o M)

The outer
iteration of the
saddle-point
problem

Pre-defined
GCR method

Needs the 2
dummy-solver
(uses memory)

~-

CScC

v Especially on noisy bed with linear test
functions normal vectors are discontinuous

— Artificial sink/source of mass

¢ New way to deduce mass consistent nodal
normal vectors from elements

N.

J
1/N; >° [7i(&;)er dV

nJ T N;
11/N; 32 [#(Z5)er dV||

Mass consistent normals = Logical True

Results AAIS

V_abs
3000

-2000

1000

*

CSscC

2D footprint reordered by
YAMS (60k elements)

Internally extruded using
ALBMAP dataset (NetCDF
reader +
StructMeshMapper)

Temperatures interpolated
from Pattyn-output

Sliding values from
Inversion on coarser mesh

Block-Preconditioner as
solution

Results AAIS

CcscC

V_abs
3000

2000

1000

