
EGU 2013 – Elmer/Ice Splinter Meeting

New Developments for Elmer/Ice

Thomas Zwinger, Mika Malinen, Juha

Ruokolainen and Peter Råback

CSC – IT Center for Science Ltd.

Espoo,

Finland

Contributions by

Gaël Durand, Fabien Gillet-Chaulet and

Lionel Favier

LGGE, UJF-Grenoble, France

Jonas Thies

Univ. Uppsala, Sweden

Contents

New elmerice installation package

New features for glaciological

simulations:

– New implementation of Glen’s flow law

– Internal extrusion

– Block pre-conditioner

– Mass-conserving normals

Preliminary results AAIS

Elmer and Elmer/Ice

Elmer ~300 000 lines of mixed F90, C and

C++ code

Elmer/Ice ~20 000 lines add-on to Elmer

Main developments in algorithms, parallel

performance enhancement driven by

Elmer

– Most work is done within CSC

– Current developments:

OpenMP multi-threading, hybrid MPI-OpenMP

Intel PSI porting (many-core systems)

Sliding mesh boundaries

Elmer/Ice installation package

SourceForge (SF):

http://sourceforge.net/projects/elmerfem/

New SVN address:

– Checkout without SF-ID:

svn co svn://svn.code.sf.net/p/elmerfem/code/trunk/

– Checkout with SF-ID (needs password):

svn checkout --username=sflogin

svn+ssh://sflogin@svn.code.sf.net/p/elmerfem/code

/trunk

– Elmer/Ice is residing in a sub-directory: trunk/elmerice

http://sourceforge.net/projects/elmerfem/

Elmer/Ice installation package

Prerequisites:

– existing Elmer installation

– UNIX/Linux system

– (GNU)-make

Either define ELMERICE_HOME as the installation

path

Preferably: have ELMER_HOME defined and

Elmer/Ice then is installed in
$(ELMER_HOME)/share/elmersolver

– Mind that you have to have rights to write the

$ELMER_HOME-tree

Elmer/Ice installation package

Remove leftovers from previous builds:
 make purge

Compile: make compile

Install: make install

– If you need to use sudo option, use –E to copy the

environment.

Elmer/Ice installation package

Installation of two additional shared objects:

– ElmerIceSolvers.so : contains all solver

subroutines (physical models)

– ElmerIceUSF.so: contains all user functions

(boundary conditions, etc.)

Call syntax:

– Procedure = File "ElmerIceSolvers"

"NameSolver"

– Description of all Solvers on Wiki page

http://elmerice.elmerfem.org/wiki/doku.ph

p?id=solvers

http://elmerice.elmerfem.org/wiki/doku.php?id=solvers
http://elmerice.elmerfem.org/wiki/doku.php?id=solvers

Glen’s flow law

Until recently:

– used the Elmer built-in power law and

provided the temperature-dependent

part at the nodes only (MATC function)

New Viscosity law in Elmer:

– Viscosity model Glen in Material section

– Evaluates all variable dependencies at

integration points

– Increased stability – Newton method

works

– Documentation in Elmer/Ice Wiki

Glen’s flow law

Viscosity Model = String "Glen"

!Viscosity has to be set to a dummy value

! Use “sane” value for ParStokes

Viscosity = Real

$1.0E13*365.25*24*3600*1.0E-06

Glen Exponent = Real 3.0

Critical Shear Rate = Real 1.0e-10

 ! Rate factors

Rate Factor 1 = Real 1.258e13

Rate Factor 2 = Real 6.046e28

Activation Energy 1 = Real 60e3

Activation Energy 2 = Real 139e3

Glen Enhancement Factor = Real 1.0

Glen’s flow law

! the temperature to switch between the

! two regimes in the flow law

Limit Temperature = Real -10.0

Temperature Field Variable = String "Temp

Homologous"

! In case there is no temperature variable

!Constant Temperature = Real -10.0

Internal mesh extrusion

Until recently:

– Build 2D footprint (optimize footprint)

– Extrude externally (e.g. ExtrudeMesh)

– Split resulting 3D mesh into partitions

– Disadvantages:

3D bottleneck

 limited in size

Not able to utilize

 vertical columns

Internal mesh extrusion

New approach:

– Create footprint (like earlier)

– Partition footprint

– The rest is done inside Elmer

Internal extrusion:

– Keyword in Simulation:

 Extruded Mesh Levels=10

– This extrudes the footprint (here in 10 levels) to

unit-height

– Still need to prescribe the bedrock and surface

topography

Internal mesh extrusion

Reading NetCDF information:

– GridDataReader Under elmerice/netcdf2

(earlier under misc-tree)

– Naturally, needs working NetCDF installation
Solver 1

 Equation = “DataReader"

 Exec Solver = "Before All"

 Procedure = "GridDataReader" "GridDataReader"

 Filename = File "netcdf/ALBMAPv1.nc"

 X Name = String "x1"

 Y Name = String "y1"

 !--- Interpolation variable tolerances

 X Epsilon = Real 1.0e-2

 Y Epsilon = Real 1.0e-2

 Epsilon Time = Real 0.01

 !---- offsets and stretching

 Interpolation Bias = Real 0.0

 Interpolation Multiplier = Real 1.0

Internal mesh extrusion

Reading NetCDF information:

 Is Time Counter = Logical True

 Variable 1 = usrf ! upper surface

 Variable 2 = lsrf2 ! lower surface

 Valid Min Value 1 = Real 0.0

 Valid Min Value 2 = Real -3000.0

 ! Scales the Elmer grid to match the

 ! NetCDF grid – usually not a good idea

 Enable Scaling = Logical False

End

Internal mesh extrusion

Mapping the surfaces:

StructuredMeshMapper

Solver 5

 Exec Solver = "Before Simulation"

 Equation = "MapCoordinate"

 Procedure = "StructuredMeshMapper" "StructuredMeshMapper"

 Active Coordinate = Integer 3

 Dot Product Tolerance = Real 0.0001

 Minimum Mesh Height = Real 100.0

End

Boundary Condition 1

 Name = "Bottom"

 Bottom Surface = Equals lsrf2

End

Boundary Condition 3

 Name = "Surface"

 Top Surface = Equals usrf

End

Internal mesh extrusion

Mapping the surfaces:

StructuredMeshMapper

Can be used also in

prognostic runs:

– Uses free surface variable

for mapping the upper

surface

– Also possible to be used for

isostacy at bedrock

– Only vertical shifting of

mesh, no solution of pseudo-

elastic problem; stability!

Block pre-conditioner

Stokes equation:

– Saddle-point problem: needs stabilization

– Strong spatial variation/low-shear rate

singularity of viscosity: bad condition number

Until recently: direct solution

– MUMPS

– Strong limits due to memory

– Not good scalability above ~100 processes

– Need Krylov subspace solver to work

Block pre-conditioner

Stokes equation:

– A is similar to an elasticity problem (Navier-

equation)

– B is the discretized negative divergence

– C results from stabilization

Strategy: use pre-conditioner and solve

with Krylov-subspace method (in our case

GCR)

Block pre-conditioner

GCR:

– Builds solution space from initial solution x0

and a series of directional updates si

– Minimizes the residual

Block pre-conditioner:

– We use P instead of K

 to get directions:

– M is a mass-matrix scaled with the element-

wise fluidity (instead of exact pressure-Schur

complement)

Block pre-conditioner

Block pre-conditioner:

– Remaining issue: Need approximated inverse

of P to get a solution of

– Advantage: can get separate solution for A-

block and M

– Elmer provides interfaces to different libraries

(Hypre, Trilinos) to get this solved

Block pre-conditioner

How to use it?

– Source code is in
trunk/fem/src/modules/ParStokes.src

– Copy the code to your directory (possibly rename
the suffix to .f90, as some Fortran compilers are

picky about this) and then simply compile it:

 elmerf90 ParStokes.f90 -o

ParStokes.so

– Create a dummy routine (see next slide) for the

blocks and compile it:

 elmerf90 DummySolver.f90 -o

DummySolver.so

Block pre-conditioner

SUBROUTINE DummyRoutine(Model,Solver,dt,TransientSimulation)

 USE DefUtils

 USE SolverUtils

 USE ElementUtils

 IMPLICIT NONE

 TYPE(Solver_t) :: Solver

 TYPE(Model_t) :: Model

 REAL(KIND=dp) :: dt

 LOGICAL :: TransientSimulation

 PRINT *,”Setting up block matrix”

END SUBROUTINE DummyRoutine

Block pre-conditioner

Solver 1

 Equation = "Velocity Preconditioning“

 Procedure = "DummyRoutine" "DummyRoutine“

 Variable = -dofs 3 "V“

 Variable Output = False

 Exec Solver = "before simulation“

 Element = "p:1 b:4“

 Bubbles in Global System = False

 Linear System Symmetric = True

 Linear System Scaling = True

 Linear System Row Equilibration = Logical False

 Linear System Solver = Iterative

 Linear System Iterative Method = BiCGStab

 Linear System Max Iterations = 250

 Linear System Preconditioning = ILU0

 Linear System Convergence Tolerance = 1.0e-6

 Linear System Abort Not Converged = False

 Skip Compute Nonlinear Change = Logical True

 Back Rotate N-T Solution = Logical False

 Linear System Timing = True

 End

Dummy

solver, just to

allocate the

matrix block

Defines the

solution

parameters

that are taken

over by

ParStokes

Block pre-conditioner

Solver 2

 Equation = "Pressure Preconditioning“

 Procedure = "DummyRoutine" "DummyRoutine“

 Variable = -dofs 1 "P“

 Variable Output = False

 Exec Solver = "before simulation“

 Element = "p:1 b:4“

 Bubbles in Global System = False

 Linear System Symmetric = True

 Linear System Scaling = True

 Linear System Solver = iterative

 Linear System Iterative Method = CG

 Linear System Max Iterations = 1000

 Linear System Convergence Tolerance = 1.0e-6

 Linear System Preconditioning = Diagonal

 Linear System Residual Output = 10

 Skip Compute Nonlinear Change = Logical True

 Back Rotate N-T Solution = Logical False Linear

 System Timing = True

End

Dummy

solver, just to

allocate the

matrix block

Defines the

solution

parameters

that are taken

over by

ParStokes

Block pre-conditioner

Solver 3

 Equation = "Stokes“

 Procedure = "ParStokes" "StokesSolver“

 Element = "p:1 b:4“

 Bubbles in Global System = False

 Variable = FlowVar

 Variable Dofs = 4

 Convective = Logical False

 Block Diagonal A = Logical True

 Use Velocity Laplacian = Logical False

 !Keywords related to the block preconditioning

 Block Preconditioning = Logical True

 Linear System Scaling = Logical True

 Linear System Row Equilibration = Logical True

 Linear System Solver = "Iterative“

 Linear System GCR Restart = Integer 200

 Linear System Max Iterations = 200

 Linear System Convergence Tolerance = 1.0e-6

 Nonlinear System Max Iterations = 100

 Nonlinear System Convergence Tolerance = 1.0e-5

 Nonlinear System Newton After Tolerance = 1.0e-3

End

The outer

iteration of the

saddle-point

problem

Pre-defined

GCR method

Needs the 2

dummy-solver

(uses memory)

Mass consistent normals

Especially on noisy bed with linear test

functions normal vectors are discontinuous

– Artificial sink/source of mass

New way to deduce mass consistent nodal

normal vectors from elements

Mass consistent normals = Logical True

M. A. Walkley, et al. , On the calculation of normals in free-

surface flow problems, Comm. Num. Meth. Engrg., 20, 2004

Results AAIS

2D footprint reordered by

YAMS (60k elements)

Internally extruded using

ALBMAP dataset (NetCDF

reader +

StructMeshMapper)

Temperatures interpolated

from Pattyn-output

Sliding values from

inversion on coarser mesh

Block-Preconditioner as

solution

Results AAIS

