UiO ¢ University of Oslo

Modeling glacier thermal regime

with Elmer/Ice

Adrien Gilbert
Elmer/Ice Workshop 2017 — IGE Grenoble

Temperature (°C)
-10 -7 -3 -0

‘ 1|H\‘H\ J.“

CSC



Glacier thermal regime
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Glacier thermal regime

Seasonal snow
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Geothermal heat flux
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Key aspects

Low melting

Cold surface temperature
No percolation

Basal heat flux
Deformational heat
Frictional heat
Heat diffusion

N
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Water percolation
"= Firn conductivity
Firn permeability
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Ice advection
Ice moisture
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Key aspects

Boundary

conditions

Surface temperature
Surface melting
Basal heat flux

Advection / frictional
Water transport Latent heat Energy heat / deformational heat

»

> Flow velocity

&
l

and refreezing . diffusion/advection ) viscosity
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Density
(Firn)

Thermal regime does not result of one process but from the interaction between several
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Energy diffusion/advection

p(OH/0t +v-VH)=V(kVH)+tr(oe )+ Qllat
Enthalpy method :

Water Content Heat capacity

H(i%z (l/ T Ip (T)dT, /@WM W ey (7)d
Temperature

Latent heat of fusion

Thermal conductivity : strongly dependent on density

©={BGp7)/Clp(T),  H<Hf(p)x0, H=1(p) : :
Take into'account water in temperate ice

No boundary condition for CTS
Moisture diffusivity

22/11/2017 ‘ UiO ¢ University of Oslo ﬁ 6

CcscC




Energy diffusion/advection

Solver XX Constants
T ref enthalpy = real 200.0
Equation = String "Enthalpy Equation" L heat = real 334000.0
Procedure = File “ElmerIceSolvers" "EnthalpySolver" ! Cp(T) = A*T + B
Variable = String "Enthalpy h" Enthalpy Heat Capacity A = real 7.253
Linear System Solver = "Iterative" Enthalpy Heat Capacity B = real 146.3
Linear System Iterative Method = "BiCGStab" P _triple = real 0.061173
Linear System Max Iterations = 500 P _surf = real 0.1013
Linear System Convergence Tolerance = 1.0E-07 beta clapeyron = real 0.0974
Linear System Abort Not Converged = True End
Linear System Preconditioning = "ILUO"
Linear System Residual Output = 1
Steady State Convergence Tolerance = 1.0E-04 Material 1
Nonlinear System Convergence Tolerance = 1.0E-07
Nonlinear System Max Iterations = 3 Enthalpy Density = XX k/Cp
Nonlinear System Relaxation Factor = Real 1.0 Enthalpy Heat Diffusivity(::::::)
Apply Limiter = Logical true Water Diffusivity = XX
Apply Dirichlet = Logical True
Stabilize = True End
Exported Variable 1 = String "Phase Change Enthalpy" Body Force 1 . .
Exported Variable 1 DOFs = 1 Strain Heating
Exported Var%able 2 = String "water content" q Heat Source = XX :::::>
Exported Var}able 2 DOF's = 1 Fnihales = Tomit = Variable Phase
Exported Variable 3 = String "temperature" (:*EEEEEé Entﬁalpy
Exported Variable 3 DOFs = 1 ~—_ real MATC "tx+0.03%334
2l Enthalpy h Lower Limit = real O.
Water Content I|m|ted to 3%
End
22/11/2017 e UiO ¢ University of Oslo + 7

CcscC



Energy diffusion/advection

! Upper Surface
Boundary Condition 3
ndaries = 3

Enthalpy h Dirichlet

End

! Bedrock
Boundary Condition 1
Target Boundaries = 1
Name = "bed"

@y Heat Flux BC = logical True >
nthal Heat Flux = real $0.040*3600*24*365.2
by Basal heat flux (J yr* m?)

End
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Percolation and Refreezing

Three different approaches with decreasing complexity:

1 — Water percolation based on Colbeck 1973

* 30min time step and few centimeter vertical resolution _ Advection/Reaction

solver
See [Gilbert et al.,
Cryosphere, 2014]

Total
saturation

Residual
@@ 1satSkhrion

Effective
Saturation
O (1-8Ir)dSle /ot +np@1 SJB@@}%&AQ&:—R
n=3, non linear
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Percolation and Refreezing

Three different approaches with decreasing complexity:

1 — Water percolation based on Colbeck 1973

* 30min time step and few centimeter vertical resolution _ Advection/Reaction

solver
2 — Water percolation at constant speed See [Gilbert et al,,

e Daily time step, 10 to 50 cm vertical resolution Cryosphere, 2014]

Sle=5—SIr /1-SIir

dSle @wp dSle /0z=—R

Constant
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Percolation and Refreezing

Three different approaches with decreasing complexity:

1 — Water percolation based on Colbeck 1973

* 30min time step and few centimeter vertical resolution _ Advection/Reaction

solver

2 — Water percolation at constant speed See [Gilbert et al,,
e Daily time step, 10 to 50 cm vertical resolution B Cryosphere, 2014]
3 - Simple box model Simple solver for
* No kinetic aspect, 50cm to 1m vertical resolution vertical transfer

Surface

cold layer from the top

l Latent heat released in the first Sle =5—5¢7‘/1—5¢7"

-3

Latent heat
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Percolation and Refreezing

Temperature (°C )

METHOD 1
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METHOD 2
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Percolation and Refreezing

For large scale application: box model

Solver XX

Equation = String "percol 1D"
Procedure = File "bin/Percol 1D solver" "percol 1D solver"

End

Constants
L heat = real 334000.0
rho ice = real 917.0

Sr = real 0.01 Water content in wet firn

End

Material 1
Enthalpy Density = XX
EnD

! Upper Surface
Boundary Condition 2
Target Boundaries = 2
Surf melt = XX

END

22/11/2017
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Need enthalpy_h and
depth variable

Works only for vertically
extruded 3D mesh

Directly modifies the
enthalpy variable

urface

Latent heat
released in
the first cold

j* layer from the

Latent heat top
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Firn/snow density model

Material 1
Enthalpy Density
EnD

1 — Coupling density equation, porous solver and percolation/refreezing

Solved with op/0t +dl’@u@ Refreezing rate (kg m=yr?)

advection/reaction

from percolation / refreezing

Velocity from porous
solver (div(u)z0)

0ro 0
-20} 1-20¢
40+ 1-40+
£ Works well in cold Y
[ ° : i ;’ o
o -80' accumulation area |80 o 180
_100 - [Gilbert et al., jgr, 2014] .| {40! L100k
120/ L1200 120
02 04 06 08 1 02 04 06 08 1 02 04 06 o8 1
Density Density Densitv
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Firn/snow density model

Material 1
Enthalpy Density
EnD

2 - For wet accumulation area and around equilibrium line better to use a

proper snow model providing input for Elmer/Ice

3 - Alternative simple option: compute firn thickness as a surface variable calculated

from mass balance:

Hifirn (t+dt)=Hifirn (6)+ (mlb —/ﬂf@a )dlt

If Hlfirn (t+dt)<0 then Hlfirn (¢+dt)=0

: ification

Hlfirn= bens

At steady state: / parameter
mib /a

Compute the variable density
from Hg,,, (m w.eq.) assuming

linear profile:

p(z)=p¢é>+ (plice r@o@

Surface density

Depth

m
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Mesh vertical resolution

* Refine at the surface according to time-step

* Refine at the bottom
LINEAR REPART ROM EXTRUSION

Thermal active layer (large gradient)
Percolation

depth
0 25 50 75 100

WIIIHII“H\HIIM

Higher deformational heat
Frictional heating
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Boundary conditions

Surface :
e Surface temperature imposed by the surface energy balance or air temperature

e Surface melting imposed by the surface energy balance or degree day model

Bottom :

e Heat flux
* Frictional heating

22/11/2017
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Key aspects

Boundary Boundary condition
conditions * Surface temperature
Compute heat and moisture transport: * Surface melting
* Enthalpy solver l e Basal heat flux

Water transport Energy .
and refreezing diffusion/advection Flow velocity
~ .

A Compute ice flow
’ * Stokes or Porous

Density

Compute percolation and refreezing:
* Enthalpy solver and adv/reac solver

* Constant velocity

* Non linear approach Colbeck 1973
* Enthalpy solver and Box model

Compute density:

* Porous and adv/reac solver

e Simple custom function from mass balance
e External snow model
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Aru twin glacier collapse

I P 4
Image acquired by NASA's satellite ASTER on 4th October 2016.
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Aru twin glacier collapse

ntinel 2 image, 201 6/01/10
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Aru twin glacier collapse

ESA, Sentinel 2 image, 2016/07/21

17 July 2016: first avalanche Tian et al., JOG, 2016

* Detachment elevation: 5750-5200 m a.s.l.
* Glacier slope = 13°

* Coneslope~=3°

* Volume =68 M m3

* Deposit area = 8-9 km?

Nine people killed

22/11/2017
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Aru twin glacier collapse

ESA, Sentinel 2 image, 2016/12/08

17 July 2016: first avalanche Tian et al., JOG, 2016

* Detachment elevation: 5750-5200 m a.s.l.
* Glacier slope = 13°

* Coneslope~=3°

* Volume =68 M m3

* Deposit area = 8-9 km?

Nine people killed

21 September 2016: second avalanche

* Detachment elevation: 5800-5250 m a.s.l.

* Glacier slope =~ 11°

* Coneslope~=3°

* Volume =83 M m?3

* Deposit area = 6-7 km?

* Two distinct events at about 8 hours interval

No casualties

UiO ¢ University of Oslo 1 22

CcscC

22/11/2017




Aru twin glacier collapse

2016/10/04

Aru 1 (northern glacier) Aru 2 (southern glacier)

Pictures: Tandong Yao
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Aru twin glacier collapse

DATA:

* 6 DEM before collapses (2000, 2011, 2013, 2014, 2015a,2015b)
* 1 DEM after collapses
* ERA-interim reanalysis

OBJECTIVES:

* Model thermal regime

* Model mass balance

* Model basal condition and force balance evolution of the detachment
prior to collapse

22/11/2017
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Aru twin glacier collapse

Boundary Boundary condition
conditions * 6 month time step
Compute heat and moisture transport:
e Enthalpy solver
Water transport Energy

and refreezing diffusion/advection Flow velocity
~

A Compute ice flow
’ * Stokes

Density

Compute percolation and refreezing:

Compute density:
* Enthalpy solver and Box model P Y

e Simple custom function from mass balance

22/11/2017
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Aru twin glacier collapse

Precipitation
(ERA-interim reanalysis)
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Aru twin glacier collapse

Steady State mass balance condition

temperature
0.0

)

57

t-a.é
-11.4

temperature
l-O‘O

2.9

" (mlw‘ég%.) + elting (m ;/7.eq>)
Surface Firn thickness Surface 10 m depth
Temperature melting temperature

Simple approach = box model + simple firn parametrization + enthalpy solver + stokes solver
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Aru twin glacier collapse
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Aru twin glacier collapse

Infer glacier
dynamics from
elevation change

—_
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= Invert for friction
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z velocity
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Aru twin glacier collapse

1

o', N
‘/' )/
q / |

77 . 2011-2013 §

0.75

o
o

o
(V)

~ 12016:01-10
2016-04-09

Horizontal Velocity (m day'1)
o
N

0.00 025 050 075
thocw(dly) ¢
Sentinel image correlation
Jan-Apr 2016

. UiO ¢ University of Oslo 1 30

CcscC

22/11/2017




Aru twin glacier collapse

€ 3765 Fairly good

g agreement with
=) modeled
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Thermal Regime with ElImer/Ice

Boundary
conditions

|

Water transport Energy

and refreezing diffusion/advection Flow velocity

~
A .

Density

Coupled system to solve with different approaches possible depending on data,
computation time and expected precision of the results

‘ UiO ¢ University of Oslo 1 32

CcscC

22/11/2017




Thermal Regime with ElImer/Ice

Recommended approaches:
Cold accumulation zone on restricted area, firn thickness >= 40% total thickness

Porous solver coupled with density / Advect-React Solver / sub-daily to daily timestep /Enthalpy solver

Use different time-steps for porous/density or stokes '
Solve advec/react only on a firn body

____________________________________________________________

Entire glacier

Higher reliability Lower reliability
External snow model Firn parametrization from mass balance
Advect-Reat Solver (const velocity) Box model
Daily timestep Daily to 6 month time step
Stokes solver Stokes solver
Enthalpy solver Enthalpy solver

22/11/2017
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Further developments to be done ...

* Include gravitational moisture transport in temperate ice [Hewitt and Schoof, 2017]
 Model water transport through fracture in pure ice

* Coupling Enthalpy solver and subglacial hydrology (GLaDs)

22/11/2017
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Aru twin glacier collapse
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Aru twin glacier collapse
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Role of soft-bed property

* Low bed roughness

e Plastic behaviour in the till
* Low friction angle

* Hydrology?




