

First Elmer/lce course

14-15 February 2008 - Updated 2013

Thomas ZWINGER ${ }^{(1)}$ and Olivier GAGLIARDINI ${ }^{(2)}$

Application to ISMIP HOM ${ }^{(3)}$ tests B and D Step by step !

(1) CSC-Scientific Computing Ltd., Espoo - Finland
(2) LGGE - Grenoble - France
(3) http://homepages.ulb.ac.be/~fpattyn/ismip/ O. GAGLIARDINI - March 2013 - UW Seattle

Outline

Step 0 Start from a very simple test case. What are we solving? (Glen' s law, ...)
Step 1 Move to test ISMIP-HOM B020 (mesh, periodic BC)
Step 2 Add SaveData solver to get output on the BC (SaveLine)
Step 3 Add SaveData solver to get cpu and volume of the domain (SaveScalars)
Step 4 Add ComputeDevStress solver to get the stress field
Step 5 Move to test ISMIP-HOM D020 (sliding law from user function or MATC)
Step 6 Restart from Step 4: Move to Prognostic ISMIP B020.

- Move from a steady to a transient simulation
- Free surface solver
- Mesh Update solver

Step 7 Move to Prognostic ISMIP D020.

Step 0

Create a My_ISMIP_Appli directory
Copy the directory Step0 in My_ISMIP_Appli

- Make the mesh:> ElmerGrid 12 square.grd
-Run the test:> ElmerSolver ismip_step0.sif
- Watch the results : > ElmerPost and open square\ismip_step0.ep
- What are we solving?

Stokes:
$\operatorname{div} \sigma+\rho g=0$
$u_{i, i}=0$

Navier-Stokes with convection and acceleration terms neglected :

```
Flow Model = String Stokes
```

in the Stokes solver section

Step 0 - Glen' s law and Elmer

In glaciology, you can find (at least) two definitions for Glen's law:

$$
\begin{aligned}
D_{i j}= & \frac{B}{2} \tau_{e}^{n-1} S_{i j} \quad ; \quad S_{i j}=2 B^{-1 / n} \dot{\gamma}^{(1-n) / n} D_{i j} \\
D_{i j}= & A \tau_{e}^{n-1} S_{i j} \quad ; \quad S_{i j}=A^{-1 / n} I_{D_{2}}^{(1-n) / n} D_{i j} \quad \text { ISMIP notation } \\
& \text { where } \quad I_{D_{2}}^{2}=D_{i j} D_{i j} / 2 \quad \text { and } \quad \dot{\gamma}^{2}=2 D_{i j} D_{i j}
\end{aligned}
$$

The power-law implemented in Elmer writes: $\quad S_{i j}=2 \eta_{0} \dot{\gamma}^{m-1} D_{i j}$

$$
\begin{aligned}
& \eta_{0}=B^{-1 / n}=(2 A)^{-1 / n} \\
& m=1 / n \\
& \dot{\gamma}^{2} \geq \dot{\gamma}_{c}^{2}
\end{aligned}
$$

```
In Material Section:
    Viscosity Model = String "power law"
Viscosity = Real \etao
Viscosity Exponent = Real m
Critical Shear Rate = Real }\mp@subsup{\dot{\gamma}}{c}{
```


Step 0 - Sketch of a Steady simulation

$$
\text { Geometry + Mesh } \longrightarrow \text { Degrees of freedom }
$$

$$
\epsilon_{L}<\epsilon_{N L}<\epsilon_{C}
$$

Step 0 - Numerical methods

In the NS Solver Section:
(see Chapters 3 and 4 of Elmer Solver Manual)

- Solution for the Linear System:

```
Linear System Solver = Direct
Linear System Direct Method = umfpack
```

- Non-Linear System :

```
    Nonlinear System Max Iterations = 100
Picard Nonlinear System Convergence Tolerance = 1.0e-5 = \epsilon NNL
    Nonlinear System Newton After Iterations = 5
Nonlinear System Newton After Tolerance = 1.0e-02
Nonlinear System Relaxation Factor = 1.00
```

- Coupled problem (not needed here in fact...):

```
Steady State Convergence Tolerance = Real 1.0e-3 = \epsilon}
```

- Stabilization of the Stokes equations:

```
Stabilization Method = String Bubbles (otheroptions:Stabilized, P2P1)
```

O. GAGLIARDINI - March 2013 - UW Seattle

Step 0 - What are we solving?

Step 1 - Move to ISMIP-HOM B020

What we have to solve :

Stress free $\quad z_{s}(x)=-x \tan \left(0.5^{\circ}\right)$

Periodic BC

$$
L=20 \times 10^{3} \mathrm{~m}
$$

$$
\begin{aligned}
& A=10^{-16} \mathrm{~Pa}^{-3} \mathrm{a}^{-1} \\
& \rho=910 \mathrm{~kg} / \mathrm{m}^{3} \\
& v=v=0 \\
& \quad g=\left[\begin{array}{c}
0 \\
-9.81
\end{array}\right] \quad \text { Periodic } \mathrm{BC} \\
& z_{b}(x)=z_{s}(x)-1000+500 \sin \left(\frac{2 \pi}{L} x\right)
\end{aligned}
$$

Step 1 - Changes from Step0

- New directory, new names!
e.g.: square.grd -> mesh_B.grd
- Make the mesh : three (at least) possibilities
- Right values for the different constants (which system of Units ?)
- Add the periodic boundary conditions
O. GAGLIARDINI - March 2013 - UW Seattle

Step 1 - Mesh with ElmerGrid

Use the boundary mappings of ElmerGrid (in mesh_B.grd)

```
Subcell Limits 1 = 0.0 2.00000000e+04
Subcell Limits 2 = -1000.0 0.0
```

Geometry Mappings
! mode line limits(2) Np params(Np)
$111000.01000 .0 \quad 40.00 .0 \quad 2.00000000 e+04-1.74537356 e+02$
$101000.01000 .040 .00 .0 \quad 2.00000000 \mathrm{e}+04-1.74537356 \mathrm{e}+02$
$501000.01000 .040 .0 \quad 2.00000000 e+041.0500 .0$
End
\rightarrow distance of the mapping effect (up and down)
\rightarrow line number : >0 horizontal , < 0 vertical
\rightarrow mode: 1 = piecewise linear $\left(x_{0}, d y_{0}\right),\left(x_{1}, d y_{1}\right)$

$$
5=\text { sinus } \quad x_{0}, x_{1}, c, d y \quad x=d y \sin \left(2 \pi c\left(x-x_{0}\right) /\left(x_{1}-x_{0}\right)\right)
$$

Step 1 - Mapping with ElmerGrid

$111000.01000 .0 \quad 40.0 \quad 0.0 \quad 2.00000000 e+04 \quad-1.74537356 e+02$

$101000.01000 .0 \quad 40.0 \quad 0.0 \quad 2.00000000 e+04 \quad-1.74537356 e+02$

$501000.01000 .0 \quad 4 \quad 0.0 \quad 2.00000000 e+04 \quad 1.0 \quad 500.0$
O. GAGLIARDINI - March 2013 - UW Seattle

Step 1 - Mesh with your own script

- Start from the square 1×1 of Step 0 and deform it to obtain the mesh of ISMIP B

The script of your choice! (awk, f90, matlab, ...)

- Open the file mesh. nodes
- Read (x, y)
- Make the scaling : $\begin{aligned} & x \rightarrow L \times x \\ & y \rightarrow z_{b}+\left(z_{s}-z_{b}\right) \times y\end{aligned}\left\{\begin{array}{l}z_{s}(x)=-x \tan \left(0.5^{\circ}\right) \\ z_{b}(x)=z_{s}(x)-1000+500 \sin \left(\frac{2 \pi}{L} x\right) \\ L=20 \times 10^{3} \mathrm{~m}\end{array}\right.$
- Re-write (x, y) in mesh. nodes

Step 1 - Mesh with your own script

Format of the file mesh. nodes:

```
Node number , -1, x, Y, z
```

($\mathrm{z}=0$ in 2D)

Examples:

- f90: see file MSH_ismipB.f90

```
PROGRAM MSH ismipB
IMPLICIT NONE
REAL(KIND=8) :: x, y, z, xnew, ynew, zb, zs, L, Pi
REAL(KIND=8), ALLOCATABLE :: xnode(:), ynode(:)
CHARACTER :: NameMsh*20
INTEGER :: NtN, i, j, N
    Pi = ACOS(-1.0)
    WRITE(*,*)'Name of the Elmer mesh directory ?'
    READ(*,*)NameMsh
    WRITE(*,*)'Lenght of the mesh L [m] :'
    READ(*,*)L
    OPEN(10,file=TRIM(NameMsh)//"/mesh.header")
    READ (10,1000) NtN
    CLOSE(10)
    ALLOCATE(xnode(NtN), ynode(NtN))
    OPEN(12,file=TRIM(NameMsh)//"/mesh.nodes")
    READ(12,*) (N, j, xnode(i), ynode(i), z, i=1,NtN)
    REWIND (12)
```


DO N=1, NtN

$\mathrm{x}=\mathrm{xnode}(\mathrm{N})$
$y=$ ynode(N)
xnew = x *
zs $=-x n e w * T A N(0.5 * P i / 180.0)$
$\mathrm{zb}=\mathrm{zs}-1000.0+500.0 *$ SIN(2.0*Pi*xnew/L)
ynew = zb + y * (zs - zb)
WRITE (12,1200)N,j,xnew,ynew,z
END DO
DEALLOCATE (xnode, ynode)
1000 FORMAT(I6)
1200 FORMAT(i5,2x,i5,3(2x,e22.15))
END PROGRAM MSH_ismipB

- See other examples :
awk: see file script_awk
matlab: see file dilat_mesh.m

Step 1 - Mesh with your own mesher

Possible input format for ElmerGrid:

```
4) .ansys : Ansys input format
5) .inp : Abaqus input format by Ideas
6) .fil : Abaqus output format
7) .FDNEUT : Gambit (Fidap) neutral file
8) .unv : Universal mesh file format
9) .mphtxt : Comsol Multiphysics mesh format
10) .dat : Fieldview format
11) .node,.ele: Triangle 2D mesh format
12) .mesh : Medit mesh format
13) .msh : GID mesh format
14).msh : Gmsh mesh format
```

Examples with gmsh: see file mesh_Bgmsh.geo
> gmsh mesh_Bgmsh.geo -2 -o mesh_Bgmsh.msh
> ElmerGrid 142 mesh_Bgmsh.msh -autoclean
\rightarrow mesh_Bgmsh/mesh.*
> ElmerGrid 143 mesh_Bgmsh.msh -autoclean
\rightarrow mesh_Bgmsh.ep (ElmerPost)

O. GAGLIARDINI - March 2013 - UW Seattle

Step 1 - Elmer and Units

The choice of Units have to be coherent.
But you are free because the Stiff matrix is normalized.
For the Stokes problem, one should give values for:

- the density: $\rho \quad\left(=910 \mathrm{~kg} / \mathrm{m}^{3}\right)$
- the gravity: $g \quad\left(=9.81 \mathrm{~m} \mathrm{~s}^{-2}\right)$
- the viscosity: $\eta_{0} \quad\left(\mathrm{~Pa} \mathrm{~s}^{1 / n}\right) \quad\left(1 \mathrm{~Pa}=1 \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~m}^{-1}\right)$
$\mathrm{kg}-\mathrm{m}-\mathrm{s}$ [USI]: velocity in m / s and timestep in secondes

$\mathrm{kg}-\mathrm{m}-\mathrm{a}$: velocity in m / a and timesteps in years

$1 a=31557600 \mathrm{~s}$
$\mathrm{MPa}-\mathrm{m}-\mathrm{a}$: velocity in m / a and Stress in MPa

(What I will use in the following)
O. GAGLIARDINI - March 2013 - UW Seattle

Step 1 - Value of the ISMIP constants

For ISMIP tests A-D, the value for the constants are

- the density: $\quad \rho=910 \mathrm{~kg} / \mathrm{m}^{3}$
- the gravity: $g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$
- the fluidity: $A=10^{-16} \mathrm{~Pa}^{-3} \mathrm{a}^{-1}$

	USI kg - m - s		$\mathrm{kg}-\mathrm{m}-\mathrm{a}$		MPa - m-a	
$\mathrm{g}=$	9.81	$\mathrm{m} / \mathrm{s}^{2}$	9.7692E+15	$\mathrm{m} / \mathrm{a}^{2}$	9.7692E+15	$\mathrm{m} / \mathrm{a}^{2}$
$\rho=$	910	$\mathrm{kg} / \mathrm{m}^{3}$	910	$\mathrm{kg} / \mathrm{m}^{3}$	$9.1380 \mathrm{E}-19$	MPa m ${ }^{-2} a^{2}$
A =	3.1689E-24	$\mathrm{kg}^{-3} \mathrm{~m}^{3} \mathrm{~s}^{5}$	$1.0126 \mathrm{E}-61$	$\mathrm{kg}^{-3} \mathrm{~m}^{3} a^{5}$	100	$\mathrm{MPa}^{-3} \mathrm{a}^{-1}$
$\eta=$	5.4037E+07	$\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-5 / 3}$	1.7029E+20	$\mathrm{kg} \mathrm{m}^{-1} \mathrm{a}^{-5 / 3}$	0.1710	$\mathrm{MPa} \mathrm{a}^{1 / 3}$

$$
\begin{aligned}
& \eta_{0}=B^{-1 / n}=(2 A)^{-1 / n} \\
& m=1 / n \\
& \dot{\gamma}^{2} \geq \dot{\gamma}_{c}^{2}
\end{aligned}
$$

Step 1 - Value of the ISMIP constants

One can use MATC coding to get the correct value of the parameters

```
Syearinsec = 365.25*24*60*60
$rhoi = 900.0/(1.0e6*yearinsec^2)
Sgravity = -9.81*yearinsec^2
Sn = 3.0
Seta = (2.0*100.0)^(-1.0/n)
```



```
sody Force 1
    Flow BodyForce 1 = Real 0.0
    Flow BodyForce 2 = Real Sgravity
End
11!111111!11111111111111111111111111!1!
Material 1
    Densfty = Real Srhof
    Viscosity Model = 5tring "power law"
    viscosity = Real Seta
    viscosity Exponent = Real $1.0/n
    Critical Shear Rate = Real 1.0e-10
End
```


Step 1 - Periodic boundary conditions

Step 2 - Add SaveData Solver (SaveLine)

Objective: save the variables on the top surface (ASCII matrix file)

- Add a new solver

```
Solver 2
    Exec Solver = After All
    Procedure = File "SaveData""SaveLine"
    Filename = "ismip_surface.dat"
    File Append = Logical False
End
```

- Add this solver in the Equation Section

```
Active Solvers(2) = 1 2
```

- Tell in which BC you want to save the data

```
Boundary Condition 3
    Target Boundaries = 3
    Save Line = Logical True
End
```

- Ordering of the variables: see file ismip_surface.dat.names

Step 2 - Add SaveData Solver (SaveLine)

SaveLine can also be used to save data at a 'drilling site' (a line which is not a boundary). Here, the data are saved at $x=10 \mathrm{~km}$.

- Add a new solver

Solver 2
Exec Solver = After All
Procedure = File "SaveData""SaveLine"
Filename = "ismip_drilling.dat"
Polyline Coordinates $(2,2)=$ Real $\$(0.5 * L)-1000 .(0.5 * L) ~ 0.0$
File Append = Logical False
End

- Add this solver in the Equation Section

$$
\text { Active Solvers(2) = } 12
$$

- And don't forget to comment the Save line $=$ Logical True in BC3

Step 3 - Add SaveScalars

SaveScalars allows to save scalars and derived quantities. Here, we will save:

1/ the volume of the domain (surface),
2 / the maximum value of the absolute horizontal velocity,
3 / the flux on the 3 boundaries 2,3 and 4 .
4/ the CPU time,
5/ the CPU memory

Step 3 - Add SaveScalars

-Add a new solver

```
Solver 3
    Exec Solver = After TimeStep !! For transient simulation
    Procedure = "SaveData""SaveScalars"
    Filename = "ismip_scalars.dat"
    File Append = Logical True !! For transient simulation
    Variable 1 = String "flow solution"
    Operator 1 = String "Volume"
    Variable 2 = String "Velocity 1"
    Operator 2 = String "max abs"
    Variable 3 = String "flow solution"
    Operator 3 = String "Convective flux"
    Operator 4 = String "cpu time"
    Operator 5 = String "cpu memory"
End
```

- Add this solver in the Equation Section

```
Active Solvers(3)=1 2 3
```

- Tell at which boundaries you want to save the flux

Flux Integrate = Logical True

Step 4 - Add ComputeDevStress

Objective: compute the stress field as

$$
\int_{V} S_{i j} \Phi \mathrm{~d} V=2 \int_{V} \eta D_{i j} \Phi \mathrm{~d} V
$$

where $D_{i j}$ and η are calculated from the nodal velocities using the derivative of the basis functions

- Add a Solver

```
Solver 2
    Equation = Sij
    Variable = -nooutput "Sij"
    Variable DOFs = 1
    Exported Variable 1 = Stress[Sxx:1 Syy:1 Szz:1 Sxy:1]
    Exported Variable 1 DOFs = 4
    Procedure = "ElmerIceSolvers" "ComputeDevStress"
    Flow Solver Name = String "Flow Solution"
    Linear System Solver = Direct
    Linear System Direct Method = umfpack
End
```


Step 4 - Add ComputeDevStress

- Add this solver in the Equation Section

```
Active Solvers(4) = 1 2 3 4
```

-Add the 4 stress components in the periodic BC

```
Boundary Condition 2
    Periodic BC Sxx = Logical True
    Periodic BC Syy = Logical True
    Periodic BC Szz = Logical True
    Periodic BC Sxy = Logical True
End
```

- Add in the material section:
Cauchy = Logical False

Step 5 - Move to ISMIP-HOM D020

Changes from B020:

- geometry of domain

$$
\left\{\begin{array}{l}
z_{s}(x, y)=-x \tan \left(0.1^{\circ}\right) \\
z_{b}(x, y)=z_{s}(x, y)-1000
\end{array}\right.
$$

modify the mesh and the Boundary Condition 2 (Easy !)

- boundary condition at the bedrock interface

$$
\begin{cases}\tau_{n t}=\beta^{2} u_{t} \quad \text { with } \beta^{2}(x)=1000+1000 \sin \left(\frac{2 \pi}{L} x\right) \\ u_{n}=\boldsymbol{u} \cdot \boldsymbol{n}=0 & \text { in }\left[\text { Pa a m}{ }^{-1}\right]!\end{cases}
$$

O. GAGLIARDINI - March 2013 - UW Seattle

Step 5 - Move to ISMIP-HOM D020

Friction law in Elmer:

$$
\begin{aligned}
& C_{i} u_{i}=\sigma_{i j} n_{j} \quad(i=1,2) \\
& \longrightarrow C_{t} u_{t}=\sigma_{n t} ; C_{n} u_{n}=\sigma_{n n}
\end{aligned}
$$

where \boldsymbol{n} is the surface normal vector

Modification of the Boundary Condition 1:

- First Solution: MATC definition of Ct

Boundary Condition 1
Target Boundaries = 1
Flow Force BC = Logical True
Normal-Tangential Velocity = Logical True
Stress condition defined in a normal-tangential coordinate system

Velocity $1=$ Real $0.0 e 0$
$\} u_{n}=0$
Slip Coefficient 2 = Variable coordinate 1
Real MATC "1.0e-3*(1.0 + sin(2.0*pi* tx / L))
$C_{t}=\ldots$
End in [MPa a m-1]!

Step 5 - Move to ISMIP-HOM D020

- Second Solution: User Function to define Ct

```
Boundary Condition 1
    Slip Coefficient 2 = Variable coordinate 1
    Real Procedure "./ISMIP_D""Sliding"
End
```

where Sliding is a User Function defined in the file ISMIP_D.f90 (see next slide)

Compilation:

```
> elmerf90 ISMIP_D.f90 -o ISMIP_D
```


Step 5 - Move to ISMIP-HOM D020

```
FUNCTION Sliding ( Model, nodenumber, x) RESULT(C)
    USE Types
IMPLICIT NONE
TYPE (Model_t) :: Model
INTEGER :: nodenumber, i
REAL (KIND=dp) :: x, C, L
LOGICAL :: FirstTime=.True.
SAVE FirstTime, L
IF (FirstTime) THEN
    FirstTime=.False.
    L = MAXVAL (Model % Nodes % x)
END IF
x = Model % Nodes % x(nodenumber)
C = 1000.0e-6_dp*(1.0_dp + SIN(2.0_dp * Pi * x/ L))
    ! in MPa a /m
END FUNCTION Sliding
```


Step 6 - Move to prognostic B020

Move from a Diagnostic to a prognostic simulations:

- Steady to transient
- Add two solvers: the free surface and the Mesh Update solvers

$$
\frac{\partial z_{s}}{\partial t}+u_{x} \frac{\partial z_{s}}{\partial x}-u_{z}=a
$$

Mesh Update solver deforms the mesh to follow the moving boundary (Elastic deformation)

Step 6 - Steady to transient

The simulation Section has to be modified:

```
Simulation Type = Transient
Timestepping Method = "bdf" }\longrightarrow\mathrm{ Backward Differences Formulae
BDF Order = 1
Output Intervals = 1 }\longrightarrow\mathrm{ Save in .ep file
Timestep Intervals = 200
Timestep Sizes = 1.0
Steady State Min Iterations = 1
Steady State Max Iterations = 10 \longrightarrow To control the "implicity" of the solution
                                    over one time step
                                    (see example bellow).
```

O. GAGLIARDINI - March 2013 - UW Seattle

Step 6 - Sketch of a transient simulation

Geometry + Mesh \longrightarrow Degrees of freedom

$$
t=t+\mathrm{d} t
$$

$$
\epsilon_{L}<\epsilon_{N L}<\epsilon_{C}
$$

\square

Step 6 - Free surface Solver

The free surface solver only apply to the boundary 3 (top surface)
\longrightarrow Define a 2nd body which is the boundary 3.

```
Body 2
    Equation = 2
    Body Force = 2
    Material = 1
    Initial Condition = 2
End
```

where Equation 2, Body Force 2 and Initial Condition 2 are defined for the free surface equation.

Tell in BC3 that this is the body 2:

```
Boundary Condition 3
    Target Boundaries = 3
    !!! this BC is equal to body no. 2 !!!
    Body Id = 2
```

End

Step 6 - Free surface Solver

Add the Free Surface Solver:

```
Solver 2
    Equation = "Free Surface"
    Variable = String Zs
    Variable DOFs = 1
    Exported Variable 1 = String "Zs Residual"
    Exported Variable 1 DOFs = 1
    Procedure = "FreeSurfaceSolver" "FreeSurfaceSolver"
    Before Linsolve = "EliminateDirichlet""EliminateDirichlet"
    Linear System Solver = Iterative
    Linear System Max Iterations = 1500
    Linear System Iterative Method = BiCGStab
    Linear System Preconditioning = ILU0
    Linear System Convergence Tolerance = Real 1.0e-5
    Linear System Abort Not Converged = False
    Linear System Residual Output = 1
    Steady State Convergence Tolerance = 1.0e-03
    Relaxation factor = Real 1.0
    Stabilization Method = Bubbles
    End
```

33

Step 6 - Free surface Solver

Body Force 2:

```
Body Force 2
    Zs Accumulation Flux 1 = Real 0.0e0
    Zs Accumulation Flux 2 = Real 0.0e0
End
```

Equation 2:

```
Equation 2
    Active Solvers(1) = 2
    Flow Solution Name = String "Flow Solution"
    Convection = String Computed
End
```

Initial Condition 2: (tell that $z_{s}(x, 0)=$ ordinate of the initial top surface)

```
Initial Condition 2
    Zs = Variable Coordinate 1
        Real MATC "tx*Slope"
```

End

```
Initial Condition 2
    Zs = Variable Coordinate 1
        real Procedure "ElmerIceUSF""ZsIni"
End
```


Step 6 - Mesh Update Solver

Add the Mesh Update Solver:

```
Solver 3
    Equation = "Mesh Update"
    Linear System Solver = "Direct"
    Linear System Direct Method = umfpack
    Steady State Convergence Tolerance = 1.0e-04
End
```

Material parameter for this solver:

```
Mesh Youngs Modulus = Real 1.0
Mesh Poisson Ratio = real 0.3
```

Force that Mesh Update $1=0$ everywhere:

```
Body Force 1
    Flow BodyForce 1 = Real 0.0
    Flow BodyForce 2 = Real -9.7696e15 !MPa - a - m
    Mesh Update 1 = real 0.0
End
```

O. GAGLIARDINI - March 2013 - UW Seattle

35

Step 6 - Mesh Update Solver

Boundary condition:

```
BC1: Mesh Update 1 = real 0.0
BC2: Periodic BC Mesh Update 2 = Logical True
Mesh Update 1 = real 0.0
BC3: Mesh Update 1 = real 0.0
R⿴{冂{
```


O. GAGLIARDINI - March 2013 - UW Seattle

Step 6 - Results !

Comparison of the initial and steady surface of the prognostic run

Step 6 - better results !

Turn the mesh so that zs = 0 (turn the gravity vector also !) Force zs to be periodic

See Step6_hori

Step 7 - Move to prognostic D020

Merge Step 5 and Step 6 and it should work!

