
“Defensive programming with Elmer/Ice”
 or

 “Contributing code to Elmer(/Ice) with a
clear conscience”

Talk outline:

• What is defensive programming?

• Some specific examples of defensive programming
in Elmer/Ice.

• A bit more about version control and git,
depending on levels of interest and on how time is
going…

What is defensive programming?

“Defensive programming is a form of defensive design intended to ensure
the continuing function of a piece of software under unforeseen
circumstances. The idea can be viewed as reducing or eliminating the
prospect of Finagle's law having effect.”
(Finagle’s law: “Anything that can go wrong, will—at the worst possible
moment.”)
https://en.wikipedia.org/wiki/Defensive_programming

“Defensive programming defends against the currently impossible.”
http://c2.com/cgi/wiki?DefensiveProgramming

“Impossible things become possible when new people join the team.”
“Humans make anything possible when it comes to errors.”
http://c2.com/cgi/wiki?DefensiveProgramming

https://en.wikipedia.org/wiki/Defensive_programming
https://en.wikipedia.org/wiki/Defensive_programming
http://c2.com/cgi/wiki?DefensiveProgramming
http://c2.com/cgi/wiki?DefensiveProgramming
http://c2.com/cgi/wiki?DefensiveProgramming
http://c2.com/cgi/wiki?DefensiveProgramming

“The major difference between a thing that might go wrong and a thing that
cannot possibly go wrong is that when a thing that cannot possibly go wrong
goes wrong it usually turns out to be impossible to get at and repair.”

Douglas Adams

“It may hide bugs instead of making them visible, if misapplied.”
http://c2.com/cgi/wiki?DefensiveProgramming

“Defensive Programming is NOT about swallowing errors or hiding bugs. It’s
about deciding on the trade-off between robustness (keep running if there is
a problem you can deal with) and correctness (never return inaccurate
results).”

“The whole point of defensive programming is guarding against errors you
don’t expect.”
Steve McConnell, Code Complete http://cc2e.com/

http://c2.com/cgi/wiki?DefensiveProgramming
http://richarddingwall.name/2010/02/10/correctness-vs-robustness/
http://richarddingwall.name/2010/02/10/correctness-vs-robustness/
http://richarddingwall.name/2010/02/10/correctness-vs-robustness/
http://richarddingwall.name/2010/02/10/correctness-vs-robustness/
http://richarddingwall.name/2010/02/10/correctness-vs-robustness/
http://richarddingwall.name/2010/02/10/correctness-vs-robustness/
http://cc2e.com/
http://cc2e.com/
http://cc2e.com/

What is Fail-fast programming?

“Fail-fast systems are usually designed to stop normal operation rather than
attempt to continue a possibly flawed process.”

https://en.wikipedia.org/wiki/Fail-fast

“Hiding errors lets bugs breed. Blowing up the application in your face forces
you to fix the real problem.”

http://johannesbrodwall.com/2013/09/25/offensive-programming/

https://en.wikipedia.org/wiki/Fail-fast
https://en.wikipedia.org/wiki/Fail-fast
https://en.wikipedia.org/wiki/Fail-fast
http://johannesbrodwall.com/2013/09/25/offensive-programming/
http://johannesbrodwall.com/2013/09/25/offensive-programming/
http://johannesbrodwall.com/2013/09/25/offensive-programming/

A few more links…

Some info about defensive compiler flags:

https://source.ggy.bris.ac.uk/wiki/Debugging#Defensive_Programming

http://faculty.washington.edu/rjl/uwamath583s11/sphinx/notes/html/gfortra
n_flags.html

For some opinionated discussions on defensive programming and related
subjects:

http://johannesbrodwall.com/2013/09/25/offensive-programming/

http://danielroop.com/blog/2009/10/15/why-defensive-programming-is-
rubbish/

https://source.ggy.bris.ac.uk/wiki/Debugging#Defensive_Programming
https://source.ggy.bris.ac.uk/wiki/Debugging#Defensive_Programming
https://source.ggy.bris.ac.uk/wiki/Debugging#Defensive_Programming
http://faculty.washington.edu/rjl/uwamath583s11/sphinx/notes/html/gfortran_flags.html
http://faculty.washington.edu/rjl/uwamath583s11/sphinx/notes/html/gfortran_flags.html
http://johannesbrodwall.com/2013/09/25/offensive-programming/
http://johannesbrodwall.com/2013/09/25/offensive-programming/
http://johannesbrodwall.com/2013/09/25/offensive-programming/
http://danielroop.com/blog/2009/10/15/why-defensive-programming-is-rubbish/
http://danielroop.com/blog/2009/10/15/why-defensive-programming-is-rubbish/
http://danielroop.com/blog/2009/10/15/why-defensive-programming-is-rubbish/
http://danielroop.com/blog/2009/10/15/why-defensive-programming-is-rubbish/
http://danielroop.com/blog/2009/10/15/why-defensive-programming-is-rubbish/
http://danielroop.com/blog/2009/10/15/why-defensive-programming-is-rubbish/
http://danielroop.com/blog/2009/10/15/why-defensive-programming-is-rubbish/
http://danielroop.com/blog/2009/10/15/why-defensive-programming-is-rubbish/
http://danielroop.com/blog/2009/10/15/why-defensive-programming-is-rubbish/

Now for some Elmer/Ice examples of
defensive programming…

This example is from:
MyElmerClone/elmerice/Solvers/IDSSolver.F90

Failing to successfully retrieve a variable that the solver needs is probably going to
be fatal:

“Fail-fast systems are usually designed to stop normal operation rather than
attempt to continue a possibly flawed process.”

Check your retrieved elmer variables and
act accordingly

This example is from:
MyElmerClone/elmerice/UserFunctions/USF_Sliding.F90

You might decide failure to retrieve a parameter is fatal:

Or maybe you can resort to a default value:

“It’s about deciding on the trade-off between robustness (keep running if there is a
problem you can deal with) and correctness (never return inaccurate results).”

Check your retrieved sif parameters and
act accordingly

http://richarddingwall.name/2010/02/10/correctness-vs-robustness/
http://richarddingwall.name/2010/02/10/correctness-vs-robustness/
http://richarddingwall.name/2010/02/10/correctness-vs-robustness/
http://richarddingwall.name/2010/02/10/correctness-vs-robustness/

Careful of zero array bound when
using permutations

This example is from:
MyElmerClone/elmerice/UserFunctions/USF_Zs.F90

Here CYCLE is used to avoid array bounds errors:

If bounds checking is not switched on at compile time this kind of bug can result in
memory errors which may manifest in different ways. If you are lucky, a seg fault.

The advantage of using a CASE DEFAULT clause
(or an ELSE clause in an IF statement)

This example is from:

MyElmerClone/elmerice/UserFunctions/USF_Contact.F90

Here Elmer needs to know which sliding law to use in the case of grounded
nodes when simulating a marine ice sheet.

What happens if the sliding law is spelled wrong, or the user adds a new
sliding law only to the USF_Sliding.F90 code?

Code duplication/redundancy

• Will all users always know to apply changes to
both sets of code?

Crime Culprit

Trying to use variables that are not
associated

Code duplication

Failing to check sif parameter retrieval

Array out of bounds

Omitting important DEFAULT clause

Failing to run tests before pushing to
Elmer GitHub repository

Finally the most important thing: who can we
blame for these heinous crimes of coding?

What is version control?

“Version control is a system that records changes to a file or set
of files over time so that you can recall specific versions later.”

https://git-scm.com/book/en/v2/Getting-Started-About-Version-
Control

“version control, also known as revision control or source
control, is the management of changes to documents, computer
programs … and other collections of information.”

https://en.wikipedia.org/wiki/Version_control

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Version_control

Why use version control?

• Traceability. Retrieve any previous version of your code.

• Traceability. View logged developer comments and or version
differences.

• Collaboration. Colleagues can work on the same files at the
same time (probably through branching and merging).

• Collaboration. Your repository is probably accessible through
the internet meaning you can share development with anyone
with an internet connection.

• Backup. As a side effect, you have your code both locally and
in a remote repository (and probably on your colleagues herd
drives too, depending on how branching is managed in your
project), ensuring protection against failure of one location.

Why not use version control?

• You have to learn how to use it.

If that puts you off, and since there it too much whitespace on
this slide, read the top answer to this question:

http://stackoverflow.com/questions/1408450/why-should-i-use-
version-control

http://stackoverflow.com/questions/1408450/why-should-i-use-version-control
http://stackoverflow.com/questions/1408450/why-should-i-use-version-control
http://stackoverflow.com/questions/1408450/why-should-i-use-version-control
http://stackoverflow.com/questions/1408450/why-should-i-use-version-control
http://stackoverflow.com/questions/1408450/why-should-i-use-version-control
http://stackoverflow.com/questions/1408450/why-should-i-use-version-control
http://stackoverflow.com/questions/1408450/why-should-i-use-version-control
http://stackoverflow.com/questions/1408450/why-should-i-use-version-control
http://stackoverflow.com/questions/1408450/why-should-i-use-version-control
http://stackoverflow.com/questions/1408450/why-should-i-use-version-control
http://stackoverflow.com/questions/1408450/why-should-i-use-version-control
http://stackoverflow.com/questions/1408450/why-should-i-use-version-control

Git SVN

• Distributed version
control

• Powerful and flexible

• Available offline

• Non-intuitive
commands

• Lots to learn

• Centralised version
control

• Easy to learn

Git Github

• Distributed version
control system

• Web host for git
repositories

• It is apparently
possible to use SVN to
access github
repositories, but I
have not tried this…

Branch structure Directory structure

The Elmer/Ice branch contains all
of the Elmer code, including the
glaciological functions and
solvers.

It is called Elmer/Ice because it is
intended to be used and
developed by the Elmer/Ice
community.

The elmerice subdirectory is present
in all the branches (in fact all the
code is available in each branch).

It is called elmerice because it
contains the glaciological user
functions and solvers.

For contributors: if you use Elmer primarily for glaciology, and
contribute code (either by pushing directly or via pull requests),
you should use the Elmer/Ice branch, even if your changes are
not in the elmerice subdirectory.

A bit more about local and remote branches

Some git commands I use quite often (well, towards the
bottom are some less common commands I guess)

git clone
git pull
git add
git add -u
git commit
git push
git checkout -- <filename>
git checkout <branchname>
git diff
git branch
git merge
git log
git log --graph --pretty=format:'%Cred%h%Creset -%C(yellow)%d%Creset %s
%Cgreen(%cr) %C(bold blue)<%an>%Creset' --abbrev-commit

Git resources

Git online book (really good for starting learning concepts and syntax):
https://git-scm.com/book/en/v1/

Elmer online repository at GitHub:
https://github.com/ElmerCSC/elmerfem

A good place to find answers for your git questions:
http://stackoverflow.com/questions/tagged/git

Git cheat sheet:
https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf

I find key sharing makes for smooth GitHub access from Linux:
https://help.github.com/categories/ssh/

https://git-scm.com/book/en/v1/
https://git-scm.com/book/en/v1/
https://git-scm.com/book/en/v1/
https://github.com/ElmerCSC/elmerfem
https://github.com/ElmerCSC/elmerfem
http://stackoverflow.com/questions/tagged/git
https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf
https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf
https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf
https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf
https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf
https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf
https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf
https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf
https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf
https://help.github.com/categories/ssh/
https://help.github.com/categories/ssh/

