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Introduction
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Model SSA and Initialization
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Ice Flow Response

Summer acceleration
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Ice Flow Response

Winter deceleration
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SSH : Method
SSA
Non-linear differential Driving stress
fw) — 1, = o,
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SSH : Method
SSA
Non-linear differential Driving stress . hV
b— g
Basal drag ~ - T~ increase
——— - - ~ - decrease _
~ - - - T === |
Ice shelf T T~ | _ - - = ——_ _ _ _.
Sea surface height evolves over the year with an T - = =
amplitude (m): _ Sea level
SSH + ASSH ~ SSH £ 0.1 -
L
It changes...
. bedrock

1. Surface gradient

~ winter — higher front — slowdown
~ summer — lower front — speedup

: %

Let’s force the

meodel with this
N J




Ross Ice Shelf Seasonal Flow

SSH : Surface gradient and driving stress change
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Non-linear differential Driving stress
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SSH : Surface gradient and driving stress change
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SSH : Method
SSA
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SSH: Sensitivity to GL migration

Grounding line migration Solve for the change in /3 at the GL AS MRS i
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oSoH: Driving stress and GL migration

SSA

Non-linear differential Driving stress
fw) — 1, = o,

Basal drag

Sea surface height evolves over the year with an
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~ winter — higher front — slowdown
- summer — lower front — speedup

2. Grounding line migration
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oSH: Driving stress and GL migration
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Conclusion

® Seasonal melt changes affect the ice flow... But not enough to explain the seasonality observed in
GPS data

® However, It reveals that an increase in summer melt rate and an “extended summer” could lead to
significant changes in RIS flow

® SSH variations...

® Dby locally changing the driving stress
® by leading to alternated upstream and downstream migration of the GL

... could explain the seasonal flow we observe
® The migration mechanism and the effect of the ice rheology remain poorly known

® Parametrization more adapted to tides : elastic (Sayag and Worster, 2011 and 2013) and elastic
fracture (Tsai and Gudmundsson, 2015)




