



# Code/Method updates

Peter Råback and Thomas Zwinger via Zoom

2.2.2022







- We needed to add features to heat equation
  - Old HeatSolve not easily modified for the intended use
  - New modern of HeatSolver written to gradually replace the old
- Features of the new solver
  - Vectorized & threaded
  - Able to deal with discontinuities
- Still missing some features from old solver
  - o Phase change, compressibility, heat control

- HeatSolveVec uses OpenMP
   SIMD + threading for assembly
- Bubble stabilization
  - Automatic selection of bubble degrees if not set or mixed element mesh
- Use larger amount if IP points to fill vector units
- Use library functionality for pressure melting point limit





- Upper limit has to be given in Body
   Force rather than Material
- Use normal function for material parameters
- Same for boundary conditions

```
Body Force 1
  Temperature Upper Limit = Real 273.15 ! we
ignore pressure melting point

Material 1
  Heat Capacity = Variable Temperature
  Real lua "capacity(tx[0])*yearinsec^(2.0)"
  Heat Conductivity = Variable Temperature
  Real lua "conductivity(tx[0])*yearinsec*Pa2MPa"

Boundary Condition 3
  Name = "bedrock"
  Heat Flux = Real #0.050 * yearinsec * Pa2MPa
```



#### Benchmarks mlb\_tmc\_linsys(\_hvec).sif on 6 core Intel i5-9400F

- Whole run on 25 m resolution mesh:
- Whole run on 50 m resolution mesh:

HeatSolveVec:

HeatSolveVec :

SOLVER TOTAL TIME(CPU, REAL): 231.89
234.15

SOLVER TOTAL TIME(CPU, REAL): 43.24
44.07

• TemperateIceSolver:

TemperateIceSolver:

SOLVER TOTAL TIME(CPU, REAL): 345.78 351.73

SOLVER TOTAL TIME(CPU, REAL): 64.27 65.86

• ~2/3<sup>rd</sup> of runtime

• ~2/3<sup>rd</sup> of runtime



Benchmarks mlb\_tmc\_linsys(\_hvec).sif 50m on 6 core Intel i5-9400F

• Solver timing run on 50 m resolution mesh:

#### TemperateIceSolver: HeatSolveVec:

```
      (CPU,REAL):
      4.80
      4.97 (s)
      (CPU,REAL):
      2.61
      2.75 (s)

      (CPU,REAL):
      4.75
      4.94 (s)
      (CPU,REAL):
      1.59
      1.64 (s)

      (CPU,REAL):
      4.70
      4.91 (s)
      (CPU,REAL):
      1.59
      1.63 (s)

      (CPU,REAL):
      4.72
      4.90 (s)
      (CPU,REAL):
      1.05
      1.10 (s)

      (CPU,REAL):
      4.81
      4.95 (s)
      (CPU,REAL):
      0.53
      0.54 (s)

      (CPU,REAL):
      4.69
      4.90 (s)
      (CPU,REAL):
      0.54
      0.55 (s)
```













- <a href="https://github.com/ElmerCSC/MLB">https://github.com/ElmerCSC/MLB</a>
- Testcase:

mlb\_tmc\_linsys\_hvec.sif





Test case: DiscontinuousTempSlabDG

#### Solver

! Here we define the basis
Discontinuous Galerkin = Logical True
DG Reduced Basis = Logical True
DG Reduced Basis Master Bodies(1) = 1

#### **Boundary Condition**

! Jump condition
Heat Gap = Logical True
Heat Gap Coefficient = Real 1.0e1



## **Bug-fix: Block pre-conditioner**





#### Block-preconditioner in IncompressibleNSVec

• Stokes problem block-structure

$$\begin{bmatrix} \mathbf{A} & \mathbf{B}^T \\ \mathbf{B} & \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{V} \\ \mathbf{P} \end{bmatrix} = \begin{bmatrix} \mathbf{F} \\ \mathbf{G} \end{bmatrix}$$

 $\bullet$  Optimal pre-conditioner with Pressure-Schur complement,  $\boldsymbol{Q}$  ,

$$P = \begin{bmatrix} A & B^T \\ 0 & Q \end{bmatrix}$$

○ Either split velocity block, A, into 3x3 (recommended!)

o Or as one

Block Structure (4) = Integer 1 1 1 4

```
Linear System Solver = "Block"
Block Gauss-Seidel = Logical True
Block Matrix Reuse = Logical False
Block Scaling = Logical False
Block Preconditioner = Logical True
! Default is [1 2 3 4]
Block Structure (4) = Integer 1 2 3 4
! Block Order(2) = Integer 2 1
! Linear System Scaling = False
! Linear system solver for outer loop
  Outer: Linear System Solver = "Iterative"
  Outer: Linear System Iterative Method = GCR
  Outer: Linear System GCR Restart = 250
  Outer: Linear System Residual Output = 1
 Outer: Linear System Max Iterations = 200
 Outer: Linear System Abort Not Converged = False
 Outer: Linear System Convergence Tolerance = 1e-8
```

### CSC

#### Block-preconditioner in IncompressibleNSVec

- Inner solutions (of blocks)
- Blocks 1,2,3 here associated with velocity components 1,2,3

$$\mathbf{P} = \begin{bmatrix} \mathbf{A_1} & \mathbf{0} & \mathbf{0} \\ A_{12} & \mathbf{A_2} & \mathbf{0} & \mathbf{0} \\ A_{31} & A_{23} & \mathbf{A_3} & \\ & \mathbf{0} & & \mathbf{Q} \end{bmatrix}$$

 Block 4 associated with pressure (preconditioned with scaled mass matrix is suggested by Elman)

$$A_{44} = Q = \mu^{-1}1$$



```
block 11: Linear System Convergence Tolerance = $blocktol
block 11: Linear System Solver = "iterative"
block 11: Linear System Scaling = false
block 11: Linear System Preconditioning = ilu
block 11: Linear System Residual Output = 100
block 11: Linear System Max Iterations = 500
block 11: Linear System Iterative Method = idrs
block 22: Linear System Convergence Tolerance = $blocktol
block 22: Linear System Solver = "iterative"
block 22: Linear System Scaling = false
block 22: Linear System Preconditioning = ilu
block 22: Linear System Residual Output = 100
block 22: Linear System Max Iterations = 500
block 22: Linear System Iterative Method = idrs
block 33: Linear System Convergence Tolerance = $blocktol
block 33: Linear System Solver = "iterative"
block 33: Linear System Scaling = false
block 33: Linear System Preconditioning = ilu
block 33: Linear System Residual Output = 100
block 33: Linear System Max Iterations = 500
block 33: Linear System Iterative Method = idrs
block 44: Linear System Convergence Tolerance = $blocktol
block 44: Linear System Solver = "iterative"
block 44: Linear System Scaling = true
block 44: Linear System Preconditioning = ilu
block 44: Linear System Residual Output = 100
block 44: Linear System Max Iterations = 500
block 44: Linear System Iterative Method = idrs
```

### csc

#### Block-preconditioner in IncompressibleNSVec

- Inner solutions (of blocks)
- Block 1 here associated with combined velocity components 1,2,3 and solved as a single block

$$\mathbf{P} = \begin{bmatrix} \mathbf{A_{11}} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q} \end{bmatrix}$$

 Block 2 associated with pressure (preconditioned with scaled mass matrix is suggested by Elman)

$$\mathbf{A}_{22} = \mathbf{Q} = \mu^{-1} \mathbf{1}$$

 There was a bug that prohibited nonsquare sub-blocks to be computed correctly.



```
block 11: Linear System Convergence Tolerance = $blocktol
block 11: Linear System Scaling = false
block 11: Linear System Preconditioning = ilu0
block 11: Linear System Residual Output = 100
block 11: Linear System Max Iterations = 500
block 11: Linear System Max Iterations = 500
block 11: Linear System Terative Method = idrs

block 22: Linear System Convergence Tolerance = $blocktol
block 22: Linear System Solver = "iterative"
block 22: Linear System Scaling = true
block 22: Linear System Preconditioning = ilu
block 22: Linear System Residual Output = 100
block 22: Linear System Max Iterations = 500
block 22: Linear System Iterative Method = idrs
```

### Choice of block strategy

- Using direct method MUMPS for each block we may study the effect of exact block solves on the MLB case
- There really are just two extreme strategies that are useful
   o1234: block for each velocity + pressure
   o1112: One block for velocities + pressure
- One velocity block may be reasonable if we find good linear strategy for that
   In this case scalability better than:
   1+log(1.18)/log(3) = 1.15 => Multigrid only!!

| Strategy | GCR<br>iters | Cumul.<br>time |
|----------|--------------|----------------|
| 1234     | 766          | 29.8           |
| 1112     | 648          | 63.4           |
| 1123     | 756          | 37.0           |
| 1223     | 740          | 37.0           |
| 4321     | 723          | 32.0           |
| ILUo     | 1307         | 29.43          |
| ILU1     | 723          | 20.87          |
| ILU2     | 1297         | 145.3          |
| MUMPS    | NA           | 29.6           |

### **Effect of tolerances**

- Block solver utilizes strategies for each block that should be smooth and solved to given precision
- The last decimals of the block solution may be tough to reach
- Relaxing the convergence criteria decreases number of iterations needed drastically
   omay offer great benefits for speed

| Strategy  | GCR<br>iters | Cumul.<br>time | NRM        |
|-----------|--------------|----------------|------------|
| 1234, e-8 | 749          | 35.6           | 0.90611614 |
| 1234, e-7 | 580          | 28.7           | 0.90611614 |
| 1234, e-6 | 421          | 25.0           | 0.90611612 |
| 1234, e-5 | 279          | 19.6           | 0.90611574 |
| 1112, e-8 | 635          | 70.3           | 0.90611614 |
| 1112, e-7 | 491          | 57.5           | 0.90611614 |
| 1112, e-6 | 358          | 45.6           | 0.90611611 |
| 1112, e-5 | 233          | 35.4           | 0.90611569 |



#### Block-preconditioner in IncompressibleNSVec

#### Benchmarks mlb\_linsys.sif on 6 core Intel i5-9400F

• Timings for 50 m resolution case:

| Solution strategy                           | CPU [s] | Real [s] |
|---------------------------------------------|---------|----------|
| GCR + ILU 1                                 | 27.57   | 27.98    |
| Block 4 + IDRS                              | 54.81   | 55-37    |
| Block 4 +<br>BoomerAMG<br>+FlexGMRes & IDRS | 123.54  | 124.05   |
| Block 2 + IDRS                              | 147.34  | 148.12   |
| Block 2 +<br>BoomerAMG<br>+FlexGMRes & IDRS | 444.01  | 446.60   |

• Timings for 25 m resolution case:

| Solution strategy                           | CPU[s]          | Real [s]        |
|---------------------------------------------|-----------------|-----------------|
| GCR + ILU 1                                 | 171.29 /121.49* | 172.17 /122.30* |
| Block 4 + IDRS                              | 310.89/155.41*  | 311.90/156.26*  |
| Block 4 +<br>BoomerAMG<br>+FlexGMRes & IDRS | 520.82          | 525.09          |
| Block 2 + IDRS                              | 631.43          | 634.40          |
| Block 2 + BoomerAMG +FlexGMRes & IDRS       | 1912.73         | 1919.60         |

<sup>\*</sup> Reduced tolerance run, change in NRMs 1.5e-6 (ILU) and 1e-8 (block4)

### Block4 + idrs revisited

- Comparison of Block4 strategy
   ILU1 preconditioned strategy
- The sloppier tolerance benefit the block preconditioner much more!

041.4 -> 11.30 s for Block4 030.0 -> 19.0 s for ILU1

 Also the NRM of the nonliear system seems to be less affected
 6th vs. 4th digit

| Strategy | GCR<br>iters | Cumul.<br>time | NRM                 |
|----------|--------------|----------------|---------------------|
| e-8, e-3 | 756          | 41.33          | 0.90611614          |
| e-7, e-3 | 570          | 29.8           | 0.90611614          |
| e-6, e-3 | 392          | 19.6           | 0.90611613          |
| e-5, e-3 | 252          | 12.7           | 0.90611620          |
| e-5, e-2 | 264          | 11.30          | 0.90611614          |
| e-5, e-1 | 355          | 13.73          | 0.906116 <b>4</b> 3 |
| GCR, e-8 | 1307         | 30.0           | 0.90611606          |
| GCR, e-5 | 871          | 19.0           | 0.906 <b>0</b> 8016 |



## **Bug-fix: Semi-Lagrangian example**





#### Semi-Lagrangian example

- MLB example had a wrong keyword in the (by default never executed) semi-Lagrangian solver for age/depth evaluation
- One might have realized that the *particle time integral* and the *particle distance* were identical



#### Semi-Lagrangian example

- MLB example had a wrong keyword in the (by default never executed) semi-Lagrangian solver for age/depth evaluation
- One might have realized that the *particle time integral* and the *particle distance* were identical
- Correction: *particle time integral* has been replaced by *particle time* and the operator set to *cumulative*





#### Semi-Lagrangian example

- MLB example had a wrong keyword in the (by default never executed) semi-Lagrangian solver for age/depth evaluation
- One might have realized that the *particle time integral* and the *particle distance* were identical
- Correction: particle time integral has been replaced by particle time and the operator set to cumulative
- Strong reduction of age (except for artefacts in deglaciated areas)





### New test-case for Visco-elastic Earth Model



## CSC

#### **GIA** benchmark model



• Visco-elastic – Maxwell rheology :

(partly non-reversible)

deformation as a function of E

viscous and elastic contribution

Zwinger, T., Nield, G. A., Ruokolainen, J., and King, M. A., 2020. A new open-source viscoelastic solid earth deformation module implemented in Elmer (v8.4), Geosci. Model Dev., 14, 1155–1164, doi:10.5194/gmd-13-1155-2020







• Introduction of visco-elastic stress (Wu 2004)

$$\frac{\partial \boldsymbol{\tau}}{\partial t} = \frac{\partial \boldsymbol{\tau}_0}{\partial t} + (\frac{\mu}{\eta})(\boldsymbol{\tau} - \Pi \mathbf{1})$$

$$\boldsymbol{\tau}_0 = \Pi \mathbf{1} + 2\mu \boldsymbol{\epsilon}$$

 $\circ$  At the same time we introduce pressure  $\Pi$  to enable incompressibility (Maxwell time)<sup>-1</sup>

 Additional term accounting for restoring force by specific weight gradient (aka. pre-stress advection)

$$\nabla \cdot \boldsymbol{\tau} - \rho g \nabla (\boldsymbol{e}_z \cdot \boldsymbol{d}) = \boldsymbol{0}$$

- o This is not standard in commercial FE packages, hence needs to be "cheated" around by putting jumpconditions on inter-layer boundaries (Winkler foundations)
- o In Elmer we can include this, which introduces the right boundary condition naturally from the third term of the weak formulation

$$\int\limits_{\Omega} \tau(\boldsymbol{u}) \cdot \boldsymbol{\epsilon}(\boldsymbol{v}) \, dV - \oint\limits_{\partial \Omega} (\tau(\boldsymbol{u}) \cdot \boldsymbol{n}) \cdot \boldsymbol{v} \, dA - \int\limits_{\Omega} \rho g \nabla \left(\boldsymbol{e}_z \cdot \boldsymbol{u}\right) \cdot \boldsymbol{v} \, dV = 0.$$



- Imposing ice sheet with a Bueler profile
- 5 kyr advance from o-300km (1500 m thickness)
- 5 kyr retreat
- 2 layer model (crust 12 km + mantle 600 km)





```
Material 1
Name = "Ice Material"
Density = Real #rhoi
End
! Lithosphere

Material 2
Density = #rhol
Damping = Real 0.0
Youngs Modulus = #ymodi
! supper high viscosity, hence,
! Maxwell time is such that it acts elastic
Viscosity = #viscl
Poisson Ratio = Real 0.49 !not needed if incompressible
End
! Upper Mantle 1
Material 3
Density = #rhoa
Damping = Real 0.0
Youngs Modulus = #ymoda
Viscosity = #visca
Poisson Ratio = Real 0.49 !not needed if incompressible
End
```

```
Body Force 1
  Name = "Ice Bodyforce"
  Flow BodyForce 1 = Real 0
  Flow BodyForce 2 = Real #-gravity
End
                               pg\nabla(e_z\cdot d)
Body Force 2
 Stress BodyForce 1 = 0.0
 Stress BodyForce 2 = 0.0
 Gravitational Prestress Advection = Logical True
 GPA Coeff = Real # rhol * gravl
End
Body Force 3
 Stress BodyForce 1 = 0.0
 Stress BodyForce 2 = 0.0
 Gravitational Prestress Advection = Logical True
 GPA Coeff = Real # rhoa * grava
End
```



- Add-on functionality to existing linear elasticity solver (StressSolve)
- Incompressibility expects deformations + pressure DOF
- Best strategy for stabilization: p:2 (p:1)



## CSC

## Coupled to ice sheet









and Wolf, 1999

## CSC

## Coupled to ice sheet







Far-field condition too close





Far-field condition too close

Elmer Workshop '22

33



### Testcase to be found under GitHub: tzwinger/GIA-2Dtest





## Coupling ice-shet and groundwater-permafrost model





### **Groundwater-permafrost model**

- This is still under heavy development
- Currently, special branch permafrostdevel in the GitHub repository is assigned to it





#### **Permafrost model**





### Coupling of ice-sheet to permafrost

- Coupling of solver "of same kind" (e.g. Stokes and lin. Elasticity; HTEQ in ice and permafrost)
- Either Dirichlet-Neumann or Robin-Neumann
- Elegantly using residual as load
- Can also include surface production term



## CSC

## Coupling of ice-sheet to permafrost





- facebook.com/CSCfi
- twitter.com/CSCfi
- youtube.com/CSCfi
- linkedin.com/company/csc---it-center-for-science
- github.com/CSCfi