SCIENCE OFTHE ENVIRONMENT


## 3D Calving in Elmer/Ice

Iain Wheel, Anna Crawford, Joe Todd, Doug Benn, Eef Van Dongen and Tom Cowton
iw43@st-andrews.ac.uk


## Why a new algorithm?

- Previous calving model from Joe Todd
- Model fast flowing tidewater glaciers
- Lateral margin advance/retreat
- Non projectible calving front
- Uses an extruded mesh
- Use of command line calls within the code


Todd et al., 2019


## What is in the new algorithm?

- Requires tetrahedral mesh - internal changes in Elmer to compensate
- Terminus advance
- Level set calculation
- Calving law unchanged (CDL) but any could be implemented
- Complete remeshing using Mmg
- Rebalancing using Zoltan



## Front advance

- Originally developed by Eef Van Dongen and Joe Todd
- CalvingGlacierAdvance3D.F90
- Terminus advance Lagrangian except for lateral margins
- Computationally light
- Mesh modified by MeshSolve.F90 (mesh deformation)
- Advance $=($ velocity - melt $) * d t$



## Front Advance

- Modified for boundary element reallocation
- Changes needed for remeshing



## Calving Projection

- Calving law currently unchanged (CDL)
- Calving projected on PlaneMesh (2D) using ProjectCalving.F90
- Translated in level set variable on 3DMesh



## Level set calculation (Calving3D_Iset.F90)



## Crevasse validation

- Updated to work for any front geometry
- Option to add lateral margins to prevent unrealistic calving


Todd et al., 2018


Unvalidated crevasses


Validated crevasses without lateral margins added


Validated crevasses with lateral margins added

## Implementation of calving and remeshing

- Remeshing in two steps

- CalvingRemeshMMG.F90


Updated from

## Implementation of calving and remeshing

- Gather mesh on one process for serial remeshing
- User defined calving plane



## Implementation of calving and remeshing

- Level set variable given as solution file
- Split mesh using mmg3dls (serial)



## Implementation of calving and remeshing

- Remeshing using mmg3dlib (serial)
- Anisotrophic based on solution using USF_GlacierMeshMetric.F90
- Mmg libaries sometimes fail...
- Multiple options of Hmin and Haus can be provided



## Implementation of calving and remeshing



## Interpolation to new mesh

- Numerous bugs fixed
- Variables no longer projected onto calving front
- Unfound variables beyond old mesh domain extrapolated



## Calving overview

- When is calving prevented?
- Level set implementation fails
- Remeshing fails
- Either Mmg break or mesh fails quality test
- Adaptive time stepping
- Calving stats output determines if solvers are paused



## Typical simulation

- Option to pause solvers
- ElmerSolver.F90 modified to add extra timesteps
- Really Stokes should be solved twice



## Future developments

- ParMmg - remeshing currently available
- Level set discretization in the works

- Ice cliff failure
- Clean up level set to improve remeshing


Crawford, 2021

## Application at Jakobshavn...

- Summer 2017 altering crevasse depth required to calve



## References

Todd, J 2016, 'A 3D full Stokes calving model for Store Glacier, West Greenland, PhD thesis, University of Cambridge, Cambridge
Todd, J, Christoffersen, P, Zwinger, T, et al. 2018, 'A Full-Stokes 3-D Calving Model Applied to a Large Greenlandic Glacier, Journal of Geophysical Research: Earth Surface, 123, 410-432
Todd, J, Christoffersen, P, Zwinger, T, et al. 2019, 'Sensitivity of a calving glacier to ice-ocean interactions under climate change: new insights from a 3-D full-Stokes model, The Cryosphere, 13, 1681-1694
Crawford, A, Benn, D, Todd, J et al. 2021, 'Marine ice-cliff instability modeling shows mixed-mode ice-cliff failure and yields calving rate parameterization', Nature Communications, 12, 2701

