

3D Calving in Elmer/Ice

Iain Wheel, Anna Crawford, Joe Todd, Doug Benn, Eef Van Dongen and Tom Cowton

iw43@st-andrews.ac.uk

Why a new algorithm?

- Previous calving model from Joe Todd
- Model fast flowing tidewater glaciers
 - Lateral margin advance/retreat
 - Non projectible calving front
- Uses an extruded mesh
- Use of command line calls within the code

Todd et al., 2019

What is in the new algorithm?

- Requires tetrahedral mesh internal changes in Elmer to compensate
- Terminus advance
- Level set calculation
- Calving law unchanged (CDL) but any could be implemented
- Complete remeshing using Mmg
- Rebalancing using Zoltan

Front advance

- Originally developed by Eef Van Dongen and Joe Todd
- CalvingGlacierAdvance3D.F90
- Terminus advance Lagrangian except for lateral margins
- Computationally light
- Mesh modified by MeshSolve.F90 (mesh deformation)
- Advance = (velocity melt) * dt

Front Advance

- Modified for boundary element reallocation
- Changes needed for remeshing

Calving Projection

- Calving law currently unchanged (CDL)
- Calving projected on PlaneMesh (2D) using ProjectCalving.F90
- Translated in level set variable on 3DMesh

Todd, 2016

Level set calculation (Calving3D_lset.F90)

Stress field

Project calving on 2D PlaneMesh -> validate crevasses

Translate crevasses into level set variable. Calved areas (-1) * distance from nearest crevasse

Crevasse validation

- Updated to work for any front geometry
- Option to add lateral margins to prevent unrealistic calving

Unvalidated crevasses

Validated crevasses without lateral margins added

Todd et al., 2018

Validated crevasses with lateral margins added

• Remeshing in two steps

CalvingRemeshMMG.F90

- 800

- 600

- 400 - 200

- Gather mesh on one process for serial remeshing
- User defined calving plane

Updated from Todd, 2016 Validated crevasse paths Calculate level set variable Gather calving plane & calving variable level set function applied using mmgls Alternative H_{mir} Success? Mesh quality sufficent? and Haus? Calculate calving Remeshing using mmalib stats Alternative Hmir Success? Mesh quality sufficent? and Haus? Yes Mesh redistributed using Zoltan Yes All partition have nodes nterpolation betweer **OldMesh and** NewMesh End of Remeshing

- Level set variable given as solution file
- Split mesh using mmg3dls (serial)
 - Isotrophic
- Mmg libaries sometimes fail...
 - Multiple options of Hmin and Haus can be provided

- Remeshing using mmg3dlib (serial)
 - Anisotrophic based on solution using USF_GlacierMeshMetric.F90
- Mmg libaries sometimes fail...
 - Multiple options of Hmin and Haus can be provided

upgrade

- Rebalancing using Zoltan
- When massively parallel sometimes parts have zero elements
 - Retry with lower imbalance tolerance

Interpolation to new mesh

- Numerous bugs fixed
- Variables no longer projected onto calving front
- Unfound variables beyond old mesh domain extrapolated

Calving overview

- When is calving prevented?
 - Level set implementation fails
 - Remeshing fails
- Either Mmg break or mesh fails quality test
- Adaptive time stepping
- Calving stats output determines if solvers are paused

Typical simulation

- Option to pause solvers
- ElmerSolver.F90 modified to add extra timesteps
- Really Stokes should be solved twice

Updated from Todd, 2016

Future developments

- ParMmg remeshing currently available
 - Level set discretization in the works
- Ice cliff failure
- Clean up level set to improve remeshing

Crawford, 2021

Application at Jakobshavn...

• Summer 2017 altering crevasse depth required to calve

References

- Todd, J 2016, 'A 3D full Stokes calving model for Store Glacier, West Greenland, PhD thesis, University of Cambridge, Cambridge
- Todd, J, Christoffersen, P, Zwinger, T, et al. 2018, 'A Full-Stokes 3-D Calving Model Applied to a Large Greenlandic Glacier, *Journal of Geophysical Research: Earth Surface*, 123, 410-432
- Todd, J, Christoffersen, P, Zwinger, T, et al. 2019, 'Sensitivity of a calving glacier to ice-ocean interactions under climate change: new insights from a 3-D full-Stokes model, *The Cryosphere*, 13, 1681-1694
- Crawford, A, Benn, D, Todd, J et al. 2021, 'Marine ice-cliff instability modeling shows mixed-mode ice-cliff failure and yields calving rate parameterization', *Nature Communications*, 12, 2701