

# Elmer SIF file

Content of ElmerSolver Input File explained

Based on slides by Peter Råback ElmerTeam CSC, 11/2021

### **Basic Structure of SIF file**

CSC

- Basic idea: Sections + Keywords
- Each section starts with SectionName and ends with with "End"
  - OAlternative for one keyword
    - SectionName :: Keyword
- In each section we may have an arbitrary number of keywords
- Keywords are of type
  - oReal real valued number
  - o**Integer** integer number
  - **Logical** *True* or *False*
  - **String** not case-sensitive text
  - o**File** case-sensitive text

- Sections are
  - **OHeader**
  - Constants
  - Simulation
  - ∘Solver *i*
  - ∘Body *i*
  - ○Equation *i*
  - ○Body Force *i*
  - OMaterial i
  - Initial Condition i
  - Boundary Condition i
  - **ORun Control**
  - Component i
- Not all sections are needed

### Example of minimal sif file

```
Solver 1
! Minimal sif file example
Check Keywords "Warn"
                                            Equation = "ModelPDE"
                                            Variable = "Field"
Header :: Mesh DB "." "square"
                                            Procedure = "ModelPDE" "AdvDiffSolver"
                                            Linear System Solver = Direct
Simulation
                                          End
  Max Output Level = 5
  Coordinate System = Cartesian
                                          Material 1
  Simulation Type = Steady
                                            diffusion coefficient = 1.0
  Output Intervals(1) = 1
                                          End
  Steady State Max Iterations = 1
  Post File = "case.vtu"
                                          Boundary Condition 1
                                            Name = "Fixed"
End
                                            Target Boundaries (1) = 1
                                            Field = 0.0
Body 1
  Equation = 1
                                          End
 Material = 1
                                          Boundary Condition 2
End
                                            Name = "Flux"
Equation 1
                                            Target Boundaries (1) = 2
                                            Field Flux = 1.0
  Active Solvers (1) = 1
End
                                          End
```

### Further details of SIF file

CSC

- Comments start with
- Avoid non-printable characters
   Indent with spaces not tabulators
- Many keywords defined in SOLVER.KEYWORDS database
   ofor others keyword type must be given
- Keyword(n,m) indicates a n × m array
   Applicable for Integer and Real
- Correct units are the users responsibility
- Order of sections is mainly arbitrary
   Except header

- For sections with indexing use continuous numbering starting from 1.
- include statement may be used to read other files within the SIF file
- Scripting by MATC

oPreprocessor: \$dens=1.013

oRun-time: MATC"..."

Scripting by LUA

oPreprocessor: #dens=1.013

oRun-time: LUA "..."

**Evaluated** once

Evaluated every time

**Evaluated once** 

Evaluated every time

#### **Real valued keyword functions**



1) Tables can be use to define a piecewise linear (or cubic) dependency of a variable Density = Variable Temperature Real cubic 900 Inside range: Interpolation 273 1000 300 1020 Outside range: Extrapolation! 400 1000 End 2) MATC: a library for numerical evaluation of mathematical expressions Density = Variable Temperature MATC "1000\*(1 - 1.0e-4\*(tx(0)-273.0))" or as constant expressions 3) LUA: external library, faster than MATC Density = Variable Temperature LUA "1000\*(1 - 1.0e-4\*(tx[0]-273.0))" 4) User defined function Density = Variable Temperature Procedure "mymodule" "myproc"

#### **Example of F90 User Function**



#### File mymodule.F90:

```
FUNCTION myproc( Model, n, T ) RESULT(dens)
USE DefUtils
IMPLICIT None
TYPE(Model_t) :: Model
INTEGER :: n
REAL(KIND=dp) :: T, dens

dens = 1000*(1-1.0d-4 *(T-273.0_dp))
END FUNCTION myproc
```

Compilation script comes with installation: elmerf90

```
Linux
```

```
$ elmerf90 mymodule.F90 -o mymodule.so
Windows
$ elmerf90 mymodule.F90 -o mymodule.dll
```

### **Keyword vectors and tensors**

CSC

- Real valued keyword may be a vector or tensor
- Integer valued keyword may be a vector

Target Nodes(4) = Integer 1 3 7 12

#### Sif file: Header

```
CSC
```

```
Header

Check keywords "warn"

Mesh DB "." "mymesh"

Include Path "mylib"

Results Directory "results"

End
```

- Header section does not follow the
   "Keyword = Value" syntax!
   Read before the keyword database
- When checking keywords what to do OWarn, Abort, Echo
- Optionally we may define include and results directory
  - Working directory used by default

### Sif file: Simulation

```
CSC
```

```
Simulation
  Max Output Level = 5
  Coordinate System = Cartesian
  Simulation Type = Transient ! Steady
  Timestep Intervals = 100
  Timestep Sizes = 0.1
  Timestepping Method = implicit Euler
  Output Intervals(1) = 1
  Steady State Max Iterations = 1
  Post File = "case.vtu"
End
```

- Type of coordinate system
- Steady or Transient
- If transient: time stepping parameters
- Output files (to restart a run) and VTU file
- Output level : how verbose is the code?
- Restart information (optional)

### **Sif file: Constants**

```
CSC
```

```
Constants

Gas Constant = Real 8.314

Stefan Boltzmann = Real 6.78e-08

End
```

Natural constants etc.As needed by the solver modules

# Sif file: Body

```
csc
```

```
Body i
Name = "MyBody"
Target Bodies(1) = 1
Equation = 1
Body Force = 2
Initial Condition = 2
Material = 4
End
```

In Body are assigned the Equation,
 Body Force, Material and Initial
 Condition

# Sif file: Equation

```
CSC
```

```
Equation i
Name = "MySolvers"
Active Solvers(2) = 1 2
Convection = "computed"
End
```

• Lists the active solvers for the body.

 Some rare solver specific keywords also

Convection should actually mean
 Advection (but after 25 years it is too late to change it)



### Sif file: Solver

```
Solver i
 Equation = "HeatSolver"
 Exec Solver = "always"
 Variable = Temperature
 Procedure = "HeatSolve" "HeatSolver"
  Stabilize = True
 Steady State Convergence Tolerance = 1.0e-5
 Nonlinear System Max Iterations = 1
 Linear System Solver = Iterative
 Linear System Iterative Method = BiCGstab
 Linear System Max Iterations = 1000
 Linear System Convergence Tolerance = 1.0e-8
 Linear System Preconditioning = ILU1
```

- Specifies the numerical treatment for these equations (methods, criteria of convergence,...)
  - OName of variable to be solved
  - Element definitions
  - Stabilization strategies
  - Nonlinear system strategies
  - oLinear system strategies
- Keywords treated both by library and solver module

End

### Sif file: Material

```
CSC
```

```
Material i
Name = "MyMaterial"
Density = 1.0e3
Heat Conductivity = 10.0
Heat Capacity = 4.19e3
Viscosity Model = "power law"
Viscosity = 1.0
Viscosity Exponent = $1.0/3.0
Critical Shear Rate = 1.0e-10
```

- Sets material properties for the body
  - Most real values keywords can be dependent functions
  - oSome can also be scalars and tensors

### **Sif file: Initial Condition**

```
CSC
```

```
Initial Condition i
Name = "MyGuess"
Temperature = 293.0
Velocity 1 = 1.0e-3
End
```

- Initial condition sets initial values
- Essential for time-dependent systems
- For steady-state problems provides the initial guess that may affect the iteration
- Most likely (depends on compiler!!) uninitialized variables default to zero

### Sif file: Body Force

```
CSC
```

```
Body Force i
Name = "MySource"
Heat Source = 1.0
Flow Bodyforce 2 = -1.0
Current Density = 1.23

Varname Load = Real ...
End
```

• Typically specifies the right-handside source term of the partial differential equation to be solved

 Discrete loads may be given that are directly associated with the matrix equation.

### **Sif file: Boundary Condition**

```
CSC
```

```
Boundary Condition i
Name = "Inlet"
Target Boundaries(2) = 1 2
Temperature = 293.0
Velocity 1 = Variable "Coordinate 2"
Real MATC "4*tx*(1-tx)"
```

- Different types of boundary conditions
  - oDirichlet: Variablename = Value (library routine)
  - Neumann: special keyword depending on the solver

Body Id = 4

Periodic BC = 5

End

- Boundary may be given a body id so that it can have an Equation, Material, Body Force etc. associated to it.
- Boundaries may be periodic, mortar boundaries, contact boundaries etc.

#### Sif file: Run Control

```
CSC
```

```
Run Control

Run Control Iterations = Integer 100

Provides parametric looping and internal optimization also in transient cases

Optimization Method = String "simplex" • If used, this section should be the 1st one

Cost Function = Variable Time

Real Procedure "CostFunction" "CostFunction"

End
```

# Sif file: Component

```
CSC
```

```
Component i

Name = string "gap_down"

Master Bodies(1) = integer 5

Calculate Magnetic Force = True
End
```

- Rarely used new section
- May define a collection of bodies or boundaries to be used for model lumping etc.
- Main usage currently in electromagnetics

### Some remarks about the sif file



- The structure of sif file has almost one-to-one mapping with type Model\_t in ElmerSolver code
  - oEach keyword is an entry in list structure, e.g.

```
R = ListGetConstReal( Model % Constants, "Gas Constant")
```

- For many tasks there exists a separate solver a.k.a. module
  - oDon't be afraid to add new solvers
  - oElmer modules + Elmer/Ice solvers
- Copy&paste is often a good way to start
   Hundreds of consistency tests under elmerfem/fem/test and elmerice/Tests
- Elmer Models Manual and ElmerSolver Manual have a keyword index
- Documentation is never complete ask!