	00000	OOOO	OOO	O
G A	niversité renoble lpes		IGE	1

Sensitivity of centennial mass loss projections of the Amundsen basin to the friction law

Julien Brondex ¹, Fabien Gillet-Chaulet ¹, Olivier Gagliardini ¹

¹Univ. Grenoble Alpes, CNRS, IRD, IGE, F-38000 Grenoble, France

Monday, 29 October 2018

Introduction	Model initialisation	Implementation of friction laws	Perturbation experiments	Conclusion		
\odot						
Context						
Commonly-used friction laws						

Brondex et al. (2017)

Introduction	Model initialisation	Implementation of friction laws	Perturbation experiments	Conclusion
00				
Presentation of the ex	periment			
Goals of t	he study			

- Amundsen basin (West Antarctica):
 - $\rightarrow~\sim$ 1.2 m SLE (Rignot, 2008)
 - → Total ice discharge 1973 (Mouginot *et al.*, 2014)
- How to implement the Schoof law for a real case application ?
- How sensitive are the mass loss projections at a 100-year time horizon to the choice of the friction law ?

1/ Construction of 3 initial states using inverse methods 2/ 100 yr schematic perturbation experiments with a Weertman law (linear and non-linear), a non-linear Budd law and a Schoof law (for 2 values of C_{max})

Introduction	Model initialisation	Implementation of friction laws	Perturbation experiments	Conclusion		
	00000					
Data & Method						
Datasets and parameterisations						

- Surface velocities (Rignot et al., 2011)
- Surface elevation (Fretwell et al., 2013)
- Bed elevation (Fretwell *et al.*, 2013 & Millan *et al.*, 2017)
- SMB 1979-2015 (MAR Agosta, personal communication)
- Temperature field (Van Liefferinge and Pattyn, 2013)
- Sub-ice-shelf melting parameterisation (Pollard and DeConto, 2012)
- Perfect hydrological connectivity to the ocean $\rightarrow N = \rho_i g H - \rho_w g(z_{sl} - z_b)$

Introduction	Model initialisation	Implementation of friction laws	Perturbation experiments	Conclusion		
	0000					
Data & Method						
Datasets and parameterisations						

- Surface velocities (Rignot et al., 2011)
- Surface elevation (Fretwell et al., 2013)
- Bed elevation (Fretwell et al., 2013 & Millan et al., 2017)
- SMB 1979-2015 (MAR Agosta, personal communication)
- Temperature field (Van Liefferinge and Pattyn, 2013)
- Sub-ice-shelf melting parameterisation (Pollard and DeConto, 2012)
- Perfect hydrological connectivity to the ocean $\rightarrow N = \rho_i g H - \rho_w g(z_{sl} - z_b)$

 \mathbf{U}_{obs} (m a⁻¹)

$$au_{
m b}$$
 ? η ? o Inverse methods

Introduction	Model initialisation	Implementation of friction laws	Perturbation experiments	Conclusion		
	00000					
Data & Method						
Inverse methods and initialisation strategies						

Inverse methods \longrightarrow Optimization of τ_b and η so that modeled velocites fit observed velocities

Inverse methods \longrightarrow Optimization of τ_b and η so that modeled velocites fit observed velocities

Inverse methods \longrightarrow Optimization of τ_b and η so that modeled velocites fit observed velocities

Inverse methods \longrightarrow Optimization of τ_b and η so that modeled velocites fit observed velocities

Construction of 3 initial states:

A friction law needs to be prescribed for the inversion algorithm !

Inverse methods \longrightarrow Optimization of τ_b and η so that modeled velocites fit observed velocities

Inverse methods \longrightarrow Optimization of τ_b and η so that modeled velocites fit observed velocities

Inverse methods \longrightarrow Optimization of τ_b and η so that modeled velocites fit observed velocities

Inverse methods \longrightarrow Optimization of τ_b and η so that modeled velocites fit observed velocities

Results of initialisations: viscosity

Introduction	Model initialisation	Implementation of friction laws	Perturbation experiments	Conclusion
		0000		
Method				
Experim	ental procedure	•		

Introduction	Model initialisation	Implementation of friction laws	Perturbation experiments	Conclusion	
		000			
Method					

Introduction	Model initialisation	Implementation of friction laws	Perturbation experiments	Conclusion
		0000		
Method				
Experim	ental procedure	2		

Introduction	Model initialisation	Implementation of friction laws	Perturbation experiments	Conclusion
		0000		
Method				
Experim	ental procedure	2		

Introduction	Model initialisation	Implementation of friction laws	Perturbation experiments	Conclusion
		0000		
Method				
Obtentio	n of two Cs fie	lds		

• Till deformation $\rightarrow 0.17 \leq C_{max} \leq 0.84$ (Cuffey and Paterson, 2010)

Introduction	Model initialisation	Implementation of friction laws	Perturbation experiments	Conclusion		
		0000				
Method						
Obtention of two C_{S} fields						

• Till deformation ightarrow 0.17 \leq C_{max} \leq 0.84 (Cuffey and Paterson, 2010)

• We test
$$C_{max} = 0.4$$
 and $C_{max} = 0.6$

Introduction	Model initialisation	Implementation of friction laws	Perturbation experiments	Conclusion	
		0000			
Results					
Schoof law: error on recalculated basal shear stress					

• au_b distribution calculated with the Schoof law assuming $C_{max}=0.4$

 \rightarrow Slight differences on τ_b at nodes where $\mathit{C_S}$ needs to be interpolated !

ightarrow In addition to numerical errors, differences on u_b due to differences on au_b !

Introduction	Model initialisation	Implementation of friction laws	Perturbation experiments	Conclusion		
00	00000	0000	000			
Method						
Experimental procedure						

Introduction	Model initialisation	Implementation of friction laws	Perturbation experiments	Conclusion
00	00000	0000	•00	
Method				
Experime	ental procedure	1		

Workshop Elmer/Ice

Workshop Elmer/Ice

Workshop Elmer/Ice

Workshop Elmer/Ice

Workshop Elmer/Ice

Julien Brondex , Fabien Gillet-Chaulet , Olivier Gagliardini Workshop Elmer/Ice

Introduction	Model initialisation	Implementation of friction laws	Perturbation experiments	Conclusion
				•
Conclusion				
Conclusion				

1/ The implementation of a Schoof law requires an assumption on the value of $C_{max} \rightarrow$ differences on recalculated τ_b !

2/ The Weertman law significantly underestimates the contribution of the Amundsen basin to SLR relative to the School law

3/ The projections of future SLR obtained with the **Budd law are dramatically higher** than the ones produced with the other laws

4/ Because it depends on *N* over the whole domain, **the Budd law produces different GL retreat patterns** than the other laws

- Independently of the chosen friction law, the GL dynamics is sensitive to the initialisation strategy
- The sensitivity of the GL dynamics to the friction law decreases when more weight is put on viscosity during initialisation
 - \rightarrow For the most realistic initial state $I_{R\gamma,100}$ this sensitivity remains significant

Results of EXP_ABMB for $I_{R\gamma,100}$: Budd and Schoof ice sheet profiles

Julien Brondex , Fabien Gillet-Chaulet , Olivier Gagliardini

Workshop Elmer/Ice

Ice thickness variation rate

