Coupling FS, SIA and SSA for modeling paleotimescales

MSc project Eef van Dongen *Together with* Josefin Ahlkrona, Nina Kirchner Lina von Sydow, Per Lötstedt, Cheng Gong Roderik van de Wal, Martin van Gijzen, Thomas Zwinger

Ice Sheet Coupled Approximation Levels (ISCAL)

- Dynamic FS-SIA coupling by Josefin Ahlkrona
 - \rightarrow see branch elmerice-iscal;

elmerice/Solvers/ISCAL

FS-SSA coupling

- Domain decomposition
- Coupling interface x_c based on distance to grounding line
- Implemented in SSASolver, independent of solver for Ω_{FS}
 - → ISCAL's FS-SIA coupling can be applied in Ω_{FS}
- Not robust in 3D yet

Difference below 0.5%

⁽Van Dongen et al., 2018)

Modeling of individual large-scale calving events at Bowdoin Glacier

PhD project Eef van Dongen Supervisors Guillaume Jouvet Daniel Farinotti ETH Zurich

Photo Credit: Julien Seguinot

Bowdoin Glacier

Sentinel2A, 2017-07-25, downloaded by J. Seguinot

Bowdoin Glacier

Sugiyama et al. (2015)

Observed major calving events 2015 2017

Surface ice velocity data

UAV photogrammetry

2015

Jouvet et al., (2017)

Terrestrial radar interferometry 2017

Data processed by Andrea Walter, PhD at UZH & VAW

Automatic 3D remeshing

Using MMG tools, support by Joe Todd Step 1: Refining input mesh

Automatic 3D remeshing

Using MMG tools, support by Joe Todd Step 2: Remesh based on level set (<0 for deleted elements)

Crevasse modeling

• FS on new mesh:

Problems:

- Crack surface too rough (problematic with BC)
- Need to specify 'hausdorff' locally
- FlowDepth solver returns NaN for new mesh

Crevasse modeling

Future work:

- Update in runtime
- Let crack evolve based on stress criterion
- Combine with work by Joe for parallel

Thank you!

Photo Credit: Julien Seguinot

References

Ahlkrona, J., et al. (2016). Dynamically coupling the non-linear Stokes equations with the shallow ice approximation in glaciology: Description and first applications of the ISCAL method. *Journal of Computational Physics.*

Jouvet, G. et al. (2017). Initiation of a major calving event on the Bowdoin Glacier captured by UAV photogrammetry. *The Cryosphere*.

Gladstone, R., et al. (2017). Marine ice sheet model performance depends on basal sliding physics and sub-shelf melting, *The Cryosphere*.

Van Dongen, E., et al. (2018). Dynamically coupling Full Stokes and Shallow Shelf Approximation for marine ice sheet flow using Elmer/Ice (v8.3). Accepted for publication in *Geoscientific Model Development*.