de I'environnement

=ESUG@2020

Elmer/lce
Rovaniemi 2018

Shallow models in EImer/ice

Fabien Gillet-Chaulet & Olivier Gagliardini

Outline

v" Shallow Shelf / Shallow stream Solver
v" Thickness Solver

v' A glacier example

& |) i:{r'
©:ICE

Shallow Shelf Approximation/Shallow Stream Approximation

Field equations:
8 () (0 (50 5) e

0 ov Ou 0 ou 8v 0z
e (1 (52 3y)) * oy (2 (5 +25)) - 0 =piott

Boundary Conditions:

ou ov ou Ov
4HV8_a:n$ + ZHV@nm R HV(&E %)ny = (p;9H — pwgHy)n,
Oov ov ou Ov

4Hv—n, +2Hv—

5y ny + Hv(4 9 a_x)n‘” = (pigH — pwgHo)n,
\.

oz

A sea level

Shallow Shelf Approximation/Shallow Stream Approximation

Field equations:
0 u Ov 0 ov Ou 02
9z (2H” %’% * % (H” (a_x * @)) —Pu=rolly,

o, ov Ou o, ou ov 02z
oo (1 (5 + 3y)) * oy (27 (5 +25y)) ~ 0= pst,

H=Z7s—-7Zb

Elmer/lce Solvers:

Solver Fortran File: SSASolver.£f90
Solver Name: SSABasalSolver

Required Output Variable(s):
s SSAVelocity O

Required Input Variable(s):
e (Ig Zb,Zs and Effective Pressure when using the Coulomb type friction law

The SSABasalSolver solve the classical SSA equation, it has been modified in Rev. 6440 to be executed either on a grid of dimension lower than the problem

dimension itself (i.e. the top or bottom grid of a 2D or 3D mesh for a SSA 1D or 2D problem), or on a grid of the same dimension of the problem (i.e. 2D mesh for a
2D plane view SSA solution).

It will work on a 3D mesh only if the mesh as been extruded along the vertical direction and if the base line boundary conditions have been preserved (to impose
neumann conditions). Keyword «Preserve Baseline = Logical True» in section Simulation

& + olmes 4

€16

Shallow Shelf Approximation/Shallow Stream Approximation

Field equations:
0 ou Ov 0 ov Ou 02
9z (2H”(ax @))*@(H”(ax ay))‘ﬁ"‘:”gHax
o, ov Ou o, ou ov 0z
oz (H" (ax a—y)) t oy (QH” (a— ”@)) ~Pv=pigly,

SIF - Solver Section:

Solver 1
Equation = "SSA"
Procedure = File "ElmerIceSolvers" "SSABasalSolver"
Variable = String "SSAVelocity"
Variable DOFs = 2 ! 1 in SSA 1-D or 2 in SSA-2D

Linear System Solver = Direct
Linear System Direct Method = umfpack

Nonlinear System Max Iterations = 100

Nonlinear System Convergence Tolerance = 1.0e-08
Nonlinear System Newton After Iterations = 5
Nonlinear System Newton After Tolerance = 1.0e-05

Nonlinear System Relaxation Factor = 1.00

Steady State Convergence Tolerance = Real 1.0e-3
End

(3

m
(@]
a
726,
| | b A

L2
m_
O1

Shallow Shelf Approximation/Shallow Stream Approximation

Field equations:

2
oz

(f@(—

SIF - Material Seciti

10N

Material 1

! Flow Law
Viscosity Exponent = Real $1.0/n
Critical Shear Rate = Real 1.0e-10
SSA Mean Viscosity = Real S$eta
SSA Mean Density = Real S$rhoi

! Which law are we using
SSA Friction Law = String («linear»

! friction parameter
SSA Friction Parameter = Real 0.1

Needed for Weertman and Coulomb
! Exponent m

SSA Friction Exponent = Real $1.0/n

! Min velocity for linearisation wh
SSA Friction Linear Velocity = Real

Needed for Coulomb only

Friction laws:
* Linear;

Th ,B’U,

! post peak exponent in the Coulomb

SSA Friction Post-Peak = Real ...

! Tken's bound tau b/N < C (see Ga

SSA Friction Maximum Value

SSA Min | Effective Pressure
L

Real ...
Real ...

_ m—1
%—/n’; Al
* Coulomb: ! ._
- -1
1 l n i n
\: [l |] | :
- ' 1
."t - "
ere ub=0 .
0.0001
bg-1 | i
law (g, in Gagliardini—et—at., 2007) = : = —
— —~> N A
gliardini et al. 2067} ________________———————————'_—4__—__——___——_)

A

&—

cscC

Shallow Shelf Approximation/Shallow Stream Approximation

Boundary Conditions:

ou ov Oou Ov
4}1{118—3:77,m + QHV@?’Z:C + HV((‘)_:C + %)n’! = (p;9H — pwgHy)n,

Oov ov ou Ov
4Hua—yny - 2Hz/£ny - HV((’)_:I: - a—x)ngC = (ps9H — pwgHp)n,

SIF - Boundary Conditions / Constants / Body Forces:

Boundary Condition 1

! Dirichlet condition
SSAVelocity 1 = Real ...
SSAVelocity 2 = Real ...

End

Boundary Condition 1

! Neumann Condition
Calving Front = Logical True

End

Constants

! Used for Neumann condition
Water Density = Real
Sea Level = Real ...

End

Body Force 1

! The gravity from Flow Body Force 2/3 (1D/2D)
Flow BodyForce 3 = Real Sgravity

End

b
ik}

\L
m_

(3
m

(@]

a

@P

-

| | Sein

Computing mean values (case of a 3d mesh)

SSA uses mean viscosity and density:

1 [
v(2,y) = 7 / wz,y, z)dz
Zh

> coupling with : Temperature, Damage

1 “
plz,y) = 4 / b p(z,y,z)dz
You can use:

Elmer/lce solver : GetMeanValueSolver
* unstructured meshes in the vertical direction

Solver 1
Equation = "SSA-IntValue"
Procedure = File "ElmerIceSolvers" "GetMeanValueSolver"
Variable = -nooutput String "Integrated variable"

Variable DOFs =1

Exported Variable 1
Exported Variable 1 DOFs = 1
Exported Variable 2 = String "Mean Density"
Exported Variable 2 DOFs = 1

Linear System Solver = Direct
Linear System Direct Method = umfpack

Steady State Convergence Tolerance = Real 1.0e-3
End

!'1l Upper free surface
Boundary Condition 1

Depth = Real 0.0

Mean Viscosity = Real 0.0

Mean Density = real 0.0
End

> coupling with : Density

Elmer solver : StructuredProjectToPlane
* structured meshes in the vertical direction

Active Coordinate = Integer 3

Operator 1 = depth
Operator 2 height
Operator 3 = thickness

!'! compute the integrated horizontal Viscosity and Density
Variable 4 = Viscosity
Operator 4 = int

Variable 5 = Density
Operator 5 = int

End

Material 1

SSA Mean Viscosity = Variable "int Viscosity", thickness
REAL MATC "tx(0)/tx(1l)"
SSA Mean Density = Variable "int Density", thickness
REAL MATC "tx(0)/tx(1l)"
End

Solver 1
Equation = "HeightDepth"
Procedure = "StructuredProjectToPlane" "StructuredProjectToPlane"

Outline

v" Shallow Shelf / Shallow stream Solver
v" Thickness Solver

v' A glacier example

Slmes
$:ICE

Thickness Solver

Field equations:

@JrV(fa@) = as + ap

ot

Elmer/lce Solvers:

e Solver Fortran File: ThicknessSolver.£f90
e Solver Name: ThicknessSolver
 Required Output Variable(s)@

e Required Input Variable(s): H residual

e Optional Output Variable(s): dhdt

e Optional Input Variable(s){FlowSolution

* This solver is based on the FreeSurfaceSolver and use a SUPG stabilsation scheme by default (residual free bubble
stabilization can be use instead).

* As for the FreeSurfaceSolver Min and Max limiters can be used.
* As for the Free surface solver only a Dirichlet boundary condition can be imposed.

* This solver can be used on a mesh of the same dimension as the problem (e.g. solve on the bottom or top boundary of a
3d mesh to solve the 2d thickness field) or on a mesh of lower dimension (e.g. can be use in a 2D plane view mesh with the
SSA solver for example)

Thickness Solver

OH

Field equations: o

SIF:

+V(uH) =as + ap

Solver 1
Equation = "Thickness"
Variable = -dofs 1 "H"

-dofs 1 "H Residual"

Exported Variable 1

!'! To compute dh/dt
Exported Variable 2 -dofs 1 "dHdt"
Compute dHAT = Logical True

Procedure = "ElmerIceSolvers" "ThicknessSolver"
Before Linsolve = "EliminateDirichlet" "EliminateDirichlet"

Linear System Solver = Direct
Linear System Direct Method = umfpack
Linear System Convergence Tolerance = Real 1.0e-12

! equation is linear if no min/max
Nonlinear System Max Iterations = 50
Nonlinear System Convergence Tolerance = 1.0e-6
Nonlinear System Relaxation Factor = 1.00

! stabilisation method: [stabilized\bubbles]
Stabilization Method = stabilized

!! to apply Min/Max limiters
Apply Dirichlet = Logical True

!'! to use horizontal ALE formulation
ALE Formulation = Logical True

!! To get the mean horizontal velocity
!! either give the name of the variable

Flow Solution Name = String "SSAVelocity"

! Convection Dimension = Integer

Body Force 1

1! Mass balance
Top Surface Accumulation = Real
Bottom Surface Accumulation = Real

!'! if the convection velocity is not directly given by a variable
!! Then give //Convection Dimension = Integer// in the solver section
!'! and the Mean velocity here:
Convection Velocity 1 = Variable int Velocity 1, thickness
REAL MATC "tx(0)/tx(1l)"
Convection Velocity 2 = Variable int Velocity 2, thickness
REAL MATC "tx(0)/tx(1)"

End

Boundary Condition 1 Material 1
! Dirichlet condition only !'! Limiters
H = Real ... Min H = Real

End Max H Real

End

Coupling SSA solver / Thickness solver

SSASolver uses Zs and Zb (H=Zs-Zb)
=> requires an intermediate step between ThicknessSolver and SSASolver

Initial Condition 1
H = Real

End

Body Force 1
! to update Zb and Zs according to H evolution

Zb = Real ... you can write a User Function to apply flotation to Zb
Zs = Varlable"Zb , H) and Zs=Zb+H
REAL MATC "tx(0)+tx(1)
End
Solver 1
Equation = "UpdateExport"
Procedure = "ElmerIceSolvers" "UpdateExport"
Variable = -nooutput "dumy"
Exported Variable 1 = -dofs 1 "Zb"
Exported Variable 2 = -dofs 1 "Zs" 1. From H compute Zb and Zs
End look for definition of Exported variables in «Body Force»
Solver 2
Equation = "SSA"
Procedure = File "ElmerIceSolvers" "SSABasalSolver"
Variable = String "SSAVelocity" 2. From Zb and Zs compute u
Variable DOFs = 2 ! 1 in SSA 1-D]
End
Solver 3
Equation = "Thickness"
Variable = —dofs 1 "H" 3. From u compute H
End

Examples

Friction Laws:
Ismip diagnostic test cases

[ELMER TRUNK]/elmerice/Tests/SSA Coulomb
[ELMER TRUNK]/elmerice/Tests/SSA Weertman

Coupling SSA/Thickness:

[ELMER TRUNK]/elmerice/Tests/SSA IceSheet

[ELMER TRUNK]/elmerice/examples/Test SSA > ismip prognostic test:
* 1D (2D mesh)
* 2D (2D mesh)
* 2D (3D mesh; use StructuredProjectToPlane to
compute mean values))

Coupling Stokes/Thickness:
IsSmip prognostic test:
[ELMER TRUNK]/elmerice/Tests/ThicknessSolver

Outline

v" Shallow Shelf / Shallow stream Solver
v" Thickness Solver

v A glacier example

Slmes
$:ICE

Glacier geometry, SMB and initial conditions

zb

1.4e+02 1.07+0? Ll Ll 2.0e+03 2.6e+03 .

2(4300 — x) 2y
B(x,y)=1000{ 1+ — COS ———

4300 3900

2 km

3 km
smb
45 20, 00 1 a(x,y)=aO|R¢z_R2| x\/lR‘%_Rzl
R; — R? Rq
R2 = (1750 — x)% + y2
R; = 600 m apg=10mw.e.a"1

From Le Meur et al., 2004

We will start from an ice free domain and let the glacier growths under constant SMB.

—~
(\'GE { Elmer/Ice - Beginner course - 22424 October 2018 - Rovaniemi

N

User function USF _glacier3d.F90

2(4300 — x)

B(x,y)=1000{ 1+ — COS ———

4300

FUNCTION smb (Model, nodenumber, VarIn) RESULT(VarOut)
USE types

IMPLICIT NONE

TYPE(Model_t) :: Model

INTEGER :: nodenumber

REAL(KIND=dp) :: Varln

REAL(KIND=dp) :: VarOut

REAL(KIND=dp) :: Bedrock
REAL(KIND=dp) :: X,Y,R2
REAL(KIND=dp),parameter :: a0=1.0/0.890, Ra=600._dp

Model % Nodes % x (nodenumber)
Model % Nodes % y (nodenumber)

X
y
R2=(1750.-X)%*2.+y**x2.

VarOut=0._dp

IF (abs(Ra*Ra-R2).GT.0.) THEN
VarOut=a®@
VarOQut=VarOut*abs(Ra*Ra-R2)/(Ra*Ra-R2)
VarOQut=VarQutxsqrt(abs(Ra*Ra-R2))/Ra

END IF

END FUNCTION smb

a(x,y) =ag X

FUNCTION Bedrock(x,y) RESULT(Zb)
USE types

IMPLICIT NONE
REAL(KIND=dp),INTENT(IN) :: X,y
REAL(KIND=dp) :: Zb

Zb=1000._dp*(1._dp+2._dp*(4300._dp-x)/4300._dp-cos(2xPixy/3900._dp))
END FUNCTION Bedrock

FUNCTION Bed (Model, nodenumber, VarIn) RESULT(VarOut)
USE types

IMPLICIT NONE

TYPE(Model_t) :: Model

INTEGER :: nodenumber

REAL(KIND=dp) :: Varln

REAL(KIND=dp) :: VarOut

REAL(KIND=dp) :: Bedrock
REAL(KIND=dp) :: X,y

X
y

Model % Nodes % x (nodenumber)
Model % Nodes % y (nodenumber)

VarOut=Bedrock(x,y)

END FUNCTION Bed

IR% — R?| \/|Rc21 — R?|

RZ — R? Rq

2 = (1750 — x)? + y?
R, = 600 m ap=10mwe.a"

1

From Le Meur et al., 2004

@) CTSC Elmer/Ice - Beginner course - 22424 October 2018 - Rovaniemi g%%jégé 16

Make the mesh

We use a grd input file to make a rectangular mesh of size [1000,4000] x

[-1000,1000] of 75 x 50 rectangular elements
BC 3

Coordinate System = Cartesian 2D

Subcell Divisions in 2D =1 1

Subcell Limits 1 = 1000.0 4000.0

Subcell Limits 2 =-1000.0 1000.0

Material Structure in 2D

1

End

Materials Interval = 1 1 BC 4

Boundary Definitions

I'type out Int

1 -1

1 -2

1 -3

N\ N\
N\ N\

1 4

End

Numbering = Vertical

Coordinate Ratios = 1
Decimals = 12 BC 1
Element Innernodes = False

Element Degree = 1

Triangles = False To create the EImer mesh:
Element Divisions 1 =75

Element Divisions 2 = 50

> ElmerGrid 1 2 glacier.grd

&t

S
W O

w2
i
! I
\’\

BC 2

m-

17

Run the simulation

To compile the user function (Makefile):

> make

Run the simulation:

> ElmerSolver glacier3d _SSA.sif

ssavelocity Magnitude h

0.0 20, 11|ﬂ9]||||19911111180' 78. 10]O|'1|||1|||2|O|'|1||| 34,

\'GE)) Elmer/Ice - Beginner course - 22424 October 2018 - Rovaniemi

18

Play around...

Some ideas

v change the basal friction coefficient, change the form of the friction law
v start a perturbation run from this steady state (SMB(t) or friction(t))

v change the bed geometry

v change the mesh to triangular unstructured mesh

v have a look in the Stokes directory to run the same problem with Stokes

v

