Fast and Slow: Two Very Different Problems that I Might Use Elmer/Ice On

Mike Wolovick

Wolovick and Moore, TC, 2018

Wolovick and Moore, TC, 2018

Wolovick and Moore, TC, 2018

Potential Future Work:

- 1. Better ice models (2D, 3D)
- 2. Ocean Model
- 3. Ice/Ocean coupling??
- 4. Other Possible Interventions:
 - a) Subglacial drying
 - b) Seawater pumping
 - C) ...

Bell et al., 2011

Fig. 1. Distribution of frozen-on ice in the Dome A region. (A) Surface elevation with location of frozenon ice (orange, valley head; yellow, valley wall). Contours of 50 m show surface elevation from ICESat (Ice, Cloud, and land Elevation Satellite). A black triangle marks Dome A. (B) Valley head, strong reflectorbounded, freeze-on ice packages (orange) overlain on subglacial topography. (C) Valley wall freeze-on ice packages (yellow) overlain on subglacial topography with regions of supercooling (red dots). (Inset, top right) Location of survey (red bar), along with major Antarctic Ice Divides.

Bell et al., 2011

My Model:

- 1. Steady State, SIA
- Balance Velocity + Shape Functions (downhill integration)
 All components of strain rate enter viscosity
- 3. Basal Hydrology (with freeze-on!)
 - Also a downhill integration (in hydraulic potential)
 - Hydrology equations:

$$\nabla \cdot \vec{q} = \dot{m}$$
$$\frac{\vec{q}}{|q|} = \frac{\nabla \phi}{|\nabla \phi|}$$

Mass conservation

Flow aligned with gradient of hydraulic potential

100

50 dy

0

Northing (km)

Hydraulic Heating/Cooling

-2

-4

-6

Ε

mm/yr

log₁₀(1/ka)

Upper Column $(\hat{z} \ge 0.3)$ Average Strain Rate

Basal Ice Strain Rate

-1

-2

log₁₀(1/ka)

Upper Column ($\hat{z} \ge 0.3$) Average Viscosity 1850 - 17 1900 - 1950 - 16 $\hat{z} = 0.1$ 2000 - 2050 - 14

Things Elmer/Ice Can Add to this Problem:

- 1. Full Stokes
- 2. Anisotropic rheology
- 3. Bedrock thermal conduction
- 4. Time dependence?