
Recent Elmer developments with
potential for Elmer/Ice community

Peter Råback

ElmerTeam

CSC – IT Center for Science

Elmer/Ice Advanced Workshop

CSC, 29-13.10.2018

Recent developments

• Last official release ”8.3” released 25 April 2018

oNew official relase hopefully still this year

• 660 commits since last release

• This presentation represents some sherry picking of these

features

oMany are still not fully documented

oNot typically made for Elmer/Ice in mind but could be of use

11/1/20182

New types of fields

• Initial motivation came from code coupling between Elmer and OpenFOAM

oThe nodal data is not always the best choice

• There has been some limited support of such features before but now the

treatment is more systematic, Var % Type

ovariable_on_nodes (-nodal)

ovariable_on_elements (-elem)

ovariable_on_nodes_on_elements (-dg)

ovariable_on_gauss_points (-ip)

• Since the initial use we have extended the use of these types of fields to other

uses as well

1.11.20183

• Variable on nodes

oPros: Creates a natural field that may be interpolated using
FE basis, few points

oCons: Requires continuous fields, problems at boundaries

• Variable on elements

oPros: Maintains discontinuities, few points

oCons: Zeroth order

• Variable on Gauss points

oPros: Optimal for FE assembly, maintains discontinuities

oCons: Integration rules may be heavy -> many points

Interpolation from OpenFOAM into Elmer variables

11/1/20184

x x

x x

x

x x

x x

• Different interplation have different merits

o Interpolation to Gauss points is optimal but it lacks
the ability to use interpolate values beyond the
integration points

oDiscontinuous Galerkin type of basis would allow
discontinuities and interpolation

• DG interpolation to Gauss points

oShrink the element such that the nodes coinside
with the 2nd order Gaussian integration points
(factor 1/√3)

o Interpolate fields from OpenFOAM to Elmer
elements

oFit the nodal values so that there is agreement at
the corners of the shrinked element

Interpolation from OpenFOAM into Elmer variables

11/1/20185

x x

x x

x x

x x

x

x

x

x

OpenFOAM

shrink expand

Testing for

• Interpolation error convergence with

mesh size

• Interpolation error with different

intepolation techniques

• Parallel scalability of the

interpolation

Not testing for

• Correctness of Elmer or

OpenFOAM solution – these

should be verified elsewhere

• Discretization error

• Interpolation error in OpenFOAM

perspective

Testing for interpolation

1.11.20186

7

Unit cube (1x1x1) test - interpolation accuracy

OpenFOAM interpolators

- cell

- cellPoint

Elmer field types

- ip (integration points)

- elem (elemental)

- dg (discontinuous Galerkin)

Mesh tet max size

- 0.1 (4.7k tets)

- 0.05 (32k tets)

- 0.025 (245k tets)

Mesh is rotated around x-axis to

obtain “different” mesh

Initial field distribution

(𝒙𝟐 − 𝒙) ∙ (𝒚𝟐 − 𝒚 − 𝟎.𝟐)

Such distribution allows testing

all kinds of boundary conditions

8

Unit cube (1x1x1) test - accuracy test

cell (0th order)

tet

size

elem dg ip

0.1 5.7 5.1 4.5

0.05 2.5 2.4 2.1

0.025 1 0.9 0.8

● Error b/w OpenFOAM schemes: cellPoint < cell

● Error b/w Elmer schemes: ip < dg < elem

cellPoint (1st order)

tet

size

elem dg ip

0.1 6.4 5.4 5.3

0.05 2.2 1.8 1.8

0.025 0.7 0.5 0.5

● Data direction: Elmer ⇒ OpenFOAM ⇒ Elmer

● Elmer knows initial distribution & computes error

● These are combined errors from Elmer’s perspective

Normalized L1-norm in %

9

EOF-Library - Elmer & OpenFOAM coupler

Juris Vencels (University of Latvia) EOF-Library.com

https://eof-library.com/

• Any solver can allocate additional fields of different types

-nodal ! variable on nodes (the default)

-elem ! variable on elements

-ip ! variable on integration points

-dg ! variable on nodes on elements (Discontinuous Galerkin)

• For example, to allocate OpenFOAM temperature at integration points

Exported Variable 1 = -dg ”of temperature”

• Dependencies of interpolated variable works in standard Elmer manner except

for ip-variable which must use ListGetElementReal, e.g.
Electric Conductivity = Variable ”of temperature”

Real MATC ”1.23/(1+3.45*tx)”

• Any Elmer parameter may depend on the interpolated OpenFOAM variable!

Creating different variable types in Elmer

11/1/201810

Permutation in different field types

1.11.201811

Type Index for variable

-nodal j = Var % Perm(Element % NodeIndexes(i))

-dg j = Var % Perm(Element % DgIndexes(i))

-elem j = Var % Perm(Element % ElementIndex)

-ip j = Var % Perm(Element % ElementIndex)+k

Where i is local node index and k is local gaussian quadrature index,

Possible uses of non-nodal fields

• You’re coupling with another solver and have issues with discontinuities

• You want to save information at the IP-point level

1.11.201812

ListGetElement –operations / motivation

ListGet –operations have some limitations

• They assume that parameters are evalued first at nodes and are then

interpolated to integration points

oVal_atIp = SUM(Basis(1:n) * Val(1:n))

oThis fails when the dependence is not linear , for this reason viscosity models etc. are
historically hard coded to evaluate directly at integration points

oChanging the operation from the standard one is laborious

• Lot of redundant work

oAssume dependences on global variables such as time. There is no built-in intelligence to take
this into but same aveluation is done for each node separately.

oThings become exceedingly costly when using MATC expressions.

oEven fecthing constants takes time as we need to search them in the list

1.11.201813

ListGetElement –operations / improvements

• The main shortcomings are addressed

• We may choose in which order to do interpolation/evaluation

oVarname At Ip = Logical True ! To enforce evaluation at IP

o If there is a dependency on IP type of variable the evaluation takes directly use of that

• There is a handle that keeps a ”cheet list” to save time

o Is the value constant, does it depend only on global variables, where we here last time,…

oListFind –operations are minimized

• Savings on time depend on type of variable

oMost savings are for constant expressions and global functional dependence

oDependencies on field types have similar speed as ListGetReal operations

1.11.201814

List of function calls

1.11.201815

SUBROUTINE ListInitElementKeyword(Handle,Section,Name,minv,maxv)

FUNCTION ListGetElementReal(Handle, Basis, Element, Found) RESULT(Rvalue)
FUNCTION ListGetElementRealVec(Handle, ngp, BasisVec, Element,Found) RESULT(Rvalues)
FUNCTION ListGetElementLogical(Handle, Element, Found) RESULT(Lvalue)
FUNCTION ListGetElementInteger(Handle, Element, Found) RESULT(Ivalue)
FUNCTION ListGetElementString(Handle, Element, Found) RESULT(CValue)

FUNCTION ListCompareElementString(Handle, CValue2, Element, Found) RESULT(Same)

+ some optional keywords when needed, eg. Gauss point index
+ LUA as replacement of MATC (ask Juhani Kataja)

ModelPDEHandles

1.11.201816

TYPE(ValueHandle_t) :: Load_h, FieldSource_h, DiffCoeff_h, ReactCoeff_h, ConvCoeff_h, &
TimeCoeff_h, ConvVelo1_h, ConvVelo2_h, ConvVelo3_h, &
BCFlux_h, BCCoeff_h, BCExt_h

CALL ListInitElementKeyword(Load_h,'Body Force','Field Source')
CALL ListInitElementKeyword(DiffCoeff_h,'Material','Diffusion Coefficient')
CALL ListInitElementKeyword(ReactCoeff_h,'Material','Reaction Coefficient')
CALL ListInitElementKeyword(ConvCoeff_h,'Material','Convection Coefficient')
CALL ListInitElementKeyword(TimeCoeff_h,'Material','Time Derivative Coefficient')
CALL ListInitElementKeyword(ConvVelo1_h,'Material','Convection Velocity 1')
CALL ListInitElementKeyword(ConvVelo2_h,'Material','Convection Velocity 2')
CALL ListInitElementKeyword(ConvVelo3_h,'Material','Convection Velocity 3')

CALL ListInitElementKeyword(BCFlux_h,'Boundary Condition','Field Flux')
CALL ListInitElementKeyword(BCCoeff_h,'Boundary Condition','Robin Coefficient')
CALL ListInitElementKeyword(BCExt_h,'Boundary Condition','External Field')

DO t=1,IP % n
! Basis function values & derivatives at the integration point:
!--
stat = ElementInfo(Element, Nodes, IP % U(t), IP % V(t), &

IP % W(t), detJ, Basis, dBasisdx)

! The source term at the integration point:
!--
LoadAtIP = ListGetElementReal(Load_h, Basis, Element, Found)
rho = ListGetElementReal(TimeCoeff_h, Basis, Element, Found)

a(1) = ListGetElementReal(ConvVelo1_h, Basis, Element, Found)
a(2) = ListGetElementReal(ConvVelo2_h, Basis, Element, Found)
IF(dim == 3) THEN

a(3) = ListGetElementReal(ConvVelo3_h, Basis, Element, Found)
END IF

D = ListGetElementReal(DiffCoeff_h, Basis, Element, Found)
C = ListGetElementReal(ConvCoeff_h, Basis, Element, Found)
R = ListGetElementReal(ReactCoeff_h, Basis, Element, Found)

Weight = IP % s(t) * DetJ

! diffusion term (D*grad(u),grad(v)):
! -----------------------------------
STIFF(1:nd,1:nd) = STIFF(1:nd,1:nd) + Weight * &

D * MATMUL(dBasisdx, TRANSPOSE(dBasisdx))

DO p=1,nd
DO q=1,nd

! advection term (C*grad(u),v)
! -----------------------------------
STIFF (p,q) = STIFF(p,q) + Weight * &

Speed-up for different ListGetElement -operations

1.11.201817

KeywordHandleTimer: ListGetLogical/String/Integer

Logical: 6.33

Integer: 8.20

String: 2.93

String comparison: 5.83

KeywordHandleTimer2: ListGetElementReal vs. ListGetReal

Real Constant: 1.29

Real Global MATC: 5.97

Real Variable MATC: 1.02

Real Variable MATC at IP: 0.85 (more accurate!)

Real Global UDF: 1.01

Real Variable UDF: 1.35

KeywordHandleTimer3: ListGetElementRealVec vs. ListGetReal

RealVec Constant: 6.48

RealVec Global MATC: 27.02

RealVec Variable MATC: 1.02

RealVec Variable MATC at IP:1.06 (more accurate!)

RealVec Global UDF: 5.01

RealVec Variable UDF: 7.45

Particle –related features

• ParticleAdvector

o Ideal method for fully convective problems

oFollow particles backward in time and register the
field value

oAdvected quantities: time & passive scalars

1.11.201818

360°

Particle –related features

• Recent development just out of oven

• ParticleAdvector

oSome fixes for parallel operation

oWe may initialize particles not only at nodes, but
also to

oGauss points ”-ip”

o Element centers ”-elem”

oDiscontinuous Galerkin ”-dg” (scaled)

oThe idea is to make the following of particles more
robust since they do not immediately shoot out
from the external domains at start.

1.11.201819

Particle –related features II

• Particle Dynamics

oDifferent particle sets may be sent

oMay be used to evaluete material fraction,
for example

oFeatures akin to ”MaterialPointMethod”

oSee test case ”ParticleFallingBlock”

1.11.201820

Steps towards internal partitions

• Synergy with Joe's work related to adaptive meshing

• Currently only geometric division supported in master-slave strategy

o In the future it should be modest work to add direct support for Zoltan

oThen oftentimes partitioning with ElmerGrid could be avoided

• Current test cases

o PartitioningDirectionalQuads

oPartitioningUniformQuads

• Benefits

oElimination of a preprocessing steps

o It will be easier to make “physics-aware” partitioning that can directly utilize command file

o For example, minimize communication related to periodic BCs

1.11.201821

Restart features

• Restart with different mesh

oPossibly also with different number of partitions

oMesh2MeshSolver - wrapper to GetVariable

oTest cases: NonconformingRestart*

• Higher order restart

oSaves also the PrevValues thereby allowing accurate restart also for
higher order schemes

1.11.201822

Linear solver strategies

• Fallback strategy

oUse of namespaces

oLinsys1: , Linsys2: etc.

oTest cases: LinearSolverNamespaces

1.11.201823

Dirichlet BCs

• Way in which Dirichlet conditions are set has changed

• The routines create ConstrainedDOFs and DValues tables

• These are communicated in parallel

oNo need for Orphan nodes in partitioning routines

• More robust operation, simpler scaling etc.

1.11.201824

Reduced integration rules for p-bubbles

• Relax p-bubble integration rules (don't overintegrate).

oF.ex. should speed up assembly of p-bubble stabilized elements,
especially with bricks.

• Changes the desired value of "Relative Integration Order"

1.11.201825

ElmerGrid

• Preliminary version of Gmsh version 4 import

oVersion number automatically detected

• Use of more recent Metis library

onot the changed calling convention)

1.11.201826

Further information

• http://www.csc.fi/elmer
oOfficial Homepage of Elmer

• http://www.elmerfem.org
oDiscussion forum, wiki, elmerice community

• https://github.com/elmercsc/elmerfem
oGIT version control

• http://eof-library.com/
oElmer-OpenFOAM libary by Juris Vencels

• Email: peter.raback@csc.fi

http://www.csc.fi/elmer
http://www.elmerfem.org/
https://github.com/elmercsc/elmerfem
http://eof-library.com/

