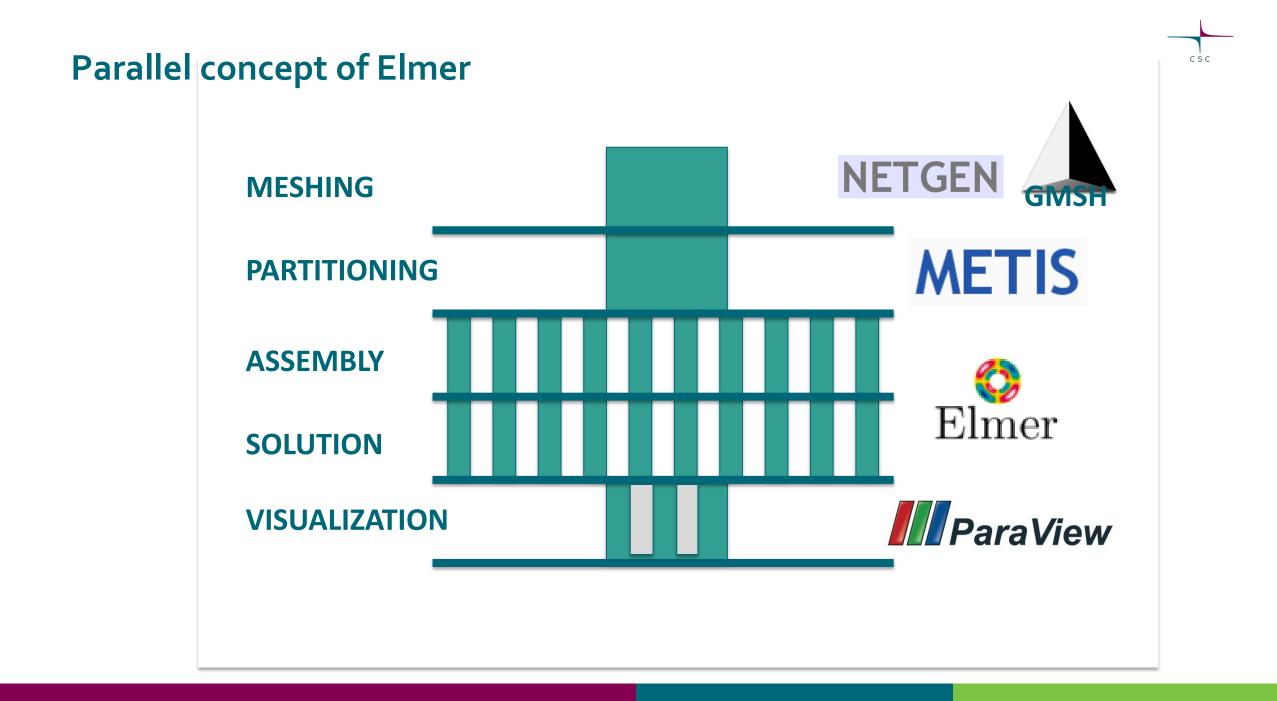


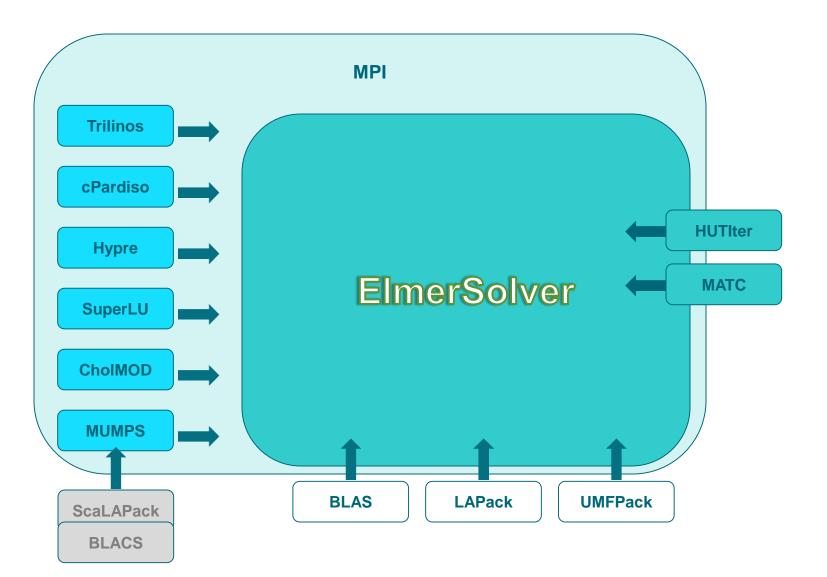
Elmer/Ice advanced workshop 2017

Grenoble, France

CSC – Finnish research, education, culture and public administration ICT knowledge center

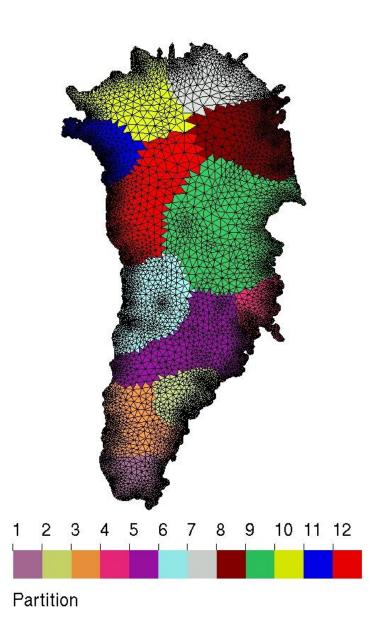


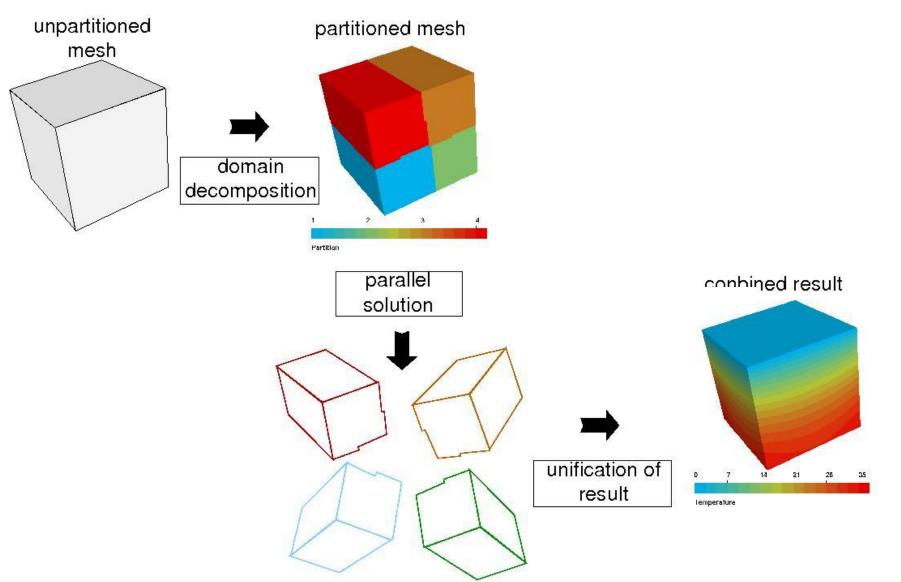
Parallel strategies in Elmer/Ice


Including pre- and postprocessing in parallel

SISL

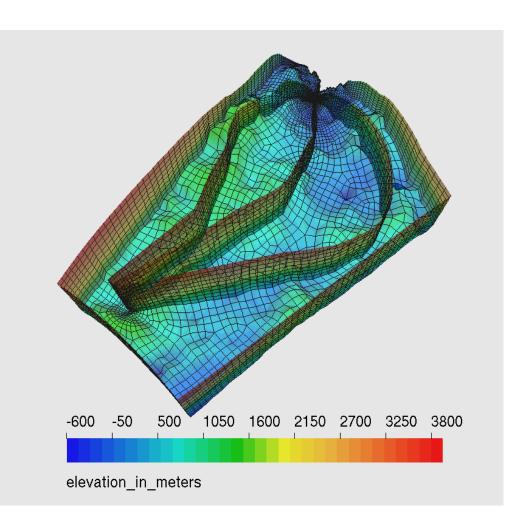
Thomas Zwinger


Parallel concept of Elmer


Parallel Concept of Elmer

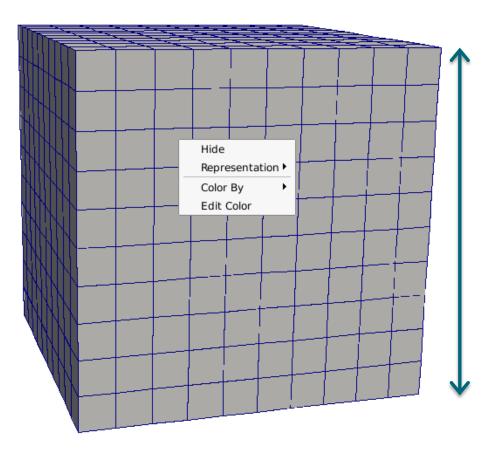
- Domain decomposition
- Additional pre-processing step (splitting)
- Every domain is running its "own" ElmerSolver
- Parallel process communication: Message Passing Interface (MPI)

CSC


Parallel Concept of Elmer

Pre-processing in Elmer/Ice (focus parallel runs)

- Ice sheet = flat geometry
- Meshing tools (e.g., Gmsh) have difficulties with aspect ratios deviating from unity
- Creating footprint mesh in 2D
- Extruding it to 3D



Internal Extrusion

- Implemented as an internal strategy in Elmer (2013) o Juha, Peter & Rupert
- First partition a 2D mesh, then extrude into 3D
- Implemented also for partitioned meshes • Extruded lines belong to the same partition by construction!
- Deterministic, i.e. element and node numbering determined by the 2D mesh
 - oComplexity: O(N)
- Neecessary, if using parallel runs with StructuredMeshMapper (see later)

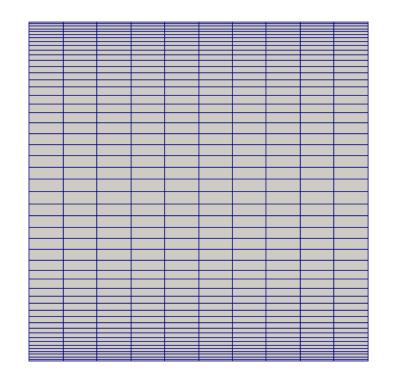
Internal extrusion

Extruded Mesh Levels = 11

By default z in [0,1]

Else give:

Extruded Max Coordinate = Real 10000.0 Extruded Min Coordinate = Real -100.0



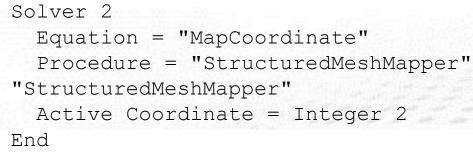
Internal extrusion

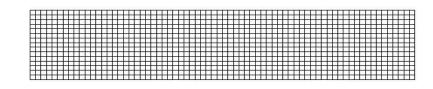
```
Extruded Mesh Levels = 11
Extruded Mesh Density = Variable Coordinate 1
Real MATC "0.2+sin(pi*tx)"
```

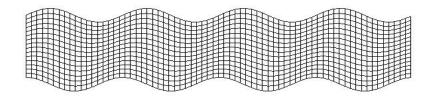
Any functional dependence is ok as long as it is positive!

The optimal division is found iteratively using Gauss-Seidel type of iteration and large variations make the iterations converge slowly.

Internal Extrusion


- StructuredMesh Mapper to impose geometry to a topological prism (3D)
- Define functions at bottom:


```
Bottom Surface = Variable
"Coordinate 1"
```


```
Real MATC "0.1*cos(5*tx)"
```

• And surface:

Bottom Surface = Variable "Coordinate 1"

ElmerSolver parallel

- Same executable: ElmerSolver
- Depending on platform/MPI: mpirun -np N

\$ mpirun -np 6 ElmerSolver

- Needs information for different processes, which SIF to load: ELMERSOLVER_STARTINFO
- User defined functions/routines usually do not need special rewriting for MPI

Improvements on block preconditioners

Massive parallel Stokes problem

• Solving Stokes equations:

$$\nabla \cdot \tau(\mathbf{u}) - \nabla p + \rho \mathbf{g} = \mathbf{0}$$
$$\nabla \cdot \mathbf{u} = 0$$

• No connection between pressure and density – saddle point problem:

$$\begin{pmatrix} A & B^{\mathrm{T}} \\ B & 0 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{u} \\ p \end{pmatrix} = \begin{pmatrix} g \\ 0 \end{pmatrix}$$

Massive parallel Stokes problem

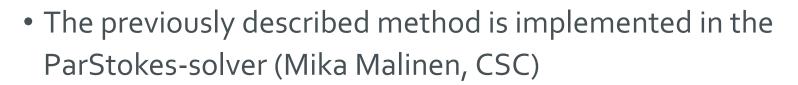
• Needs stabilization to avoid null-space:

$$\begin{pmatrix} A & B^{\mathrm{T}} \\ B & C \end{pmatrix} \cdot \begin{pmatrix} \mathbf{u} \\ p \end{pmatrix} = \begin{pmatrix} g \\ 0 \end{pmatrix}$$

Yet, this matrix usually has a bad condition number:

 Direct parallel solver (expensive): MUMPS, cPardiso (N² –algorithm)
 Good pre-conditioner + iterative solvers (N log(N) –algorithm)

$$\begin{pmatrix} A & B^{\mathrm{T}} \\ B & C \end{pmatrix} \to \mathbf{P} \cdot \begin{pmatrix} A & B^{\mathrm{T}} \\ B & C \end{pmatrix}$$


Block pre-conditioner

• Using following form: $\mathbf{P} = \begin{pmatrix} A & B^{\mathrm{T}} \\ 0 & M \end{pmatrix}$

 $\odot M$ is a by viscosity weighted unit-matrix

- Yet, we need the inverse of **P**, which requires exact solutions of linear systems of the blocks *A* and *M*
- Those systems are
 - \circ way smaller sub-problems
 - $\circ\,\textit{better conditioned}$
 - solvable using effective linear Algebra (=Krylov subspace methods) to solve them

ParStokes

- ParStokes is nowadays part of the Elmer-distribution
 - $\circ\,\text{No}\,\text{extra compilation}$ is needed
 - Interface in SIF has been tremendously simplified
 - Still needs extra dummy-routines for providing the solution space for the preconditioning blocks (pressure,velocity); but their syntax is simplified. Basically only procedure call, if happy with default settings
 - Full documentation under ElmerModelsManual (chapter 24)
 - o Eplained on elmerice-Wiki

 \circ Test-case:

elmerfem/fem/tests/PasStokes_ISMIP_HOM_A010

(New) direct parallel solver: cPardiso

- Solver very similar to MUMPS
- Included in MKL (comes with Intel compiler suite) not open source (to my knowledge)
- cPardiso can run mixed MPI/OpenMP codes, which Elmer is • Also OK to just use MPI side, like we can test in a session on Friday
- Simply include these lines into Solver section:

```
Linear System Solver = Direct
Linear System Direct Method = "cPardiso"
```


Future developments

Multi-threaded and SIMD version of advection/diffusion solver

• Modern CPU's have 12+ cores

• Modern CPU's have inproved vector units

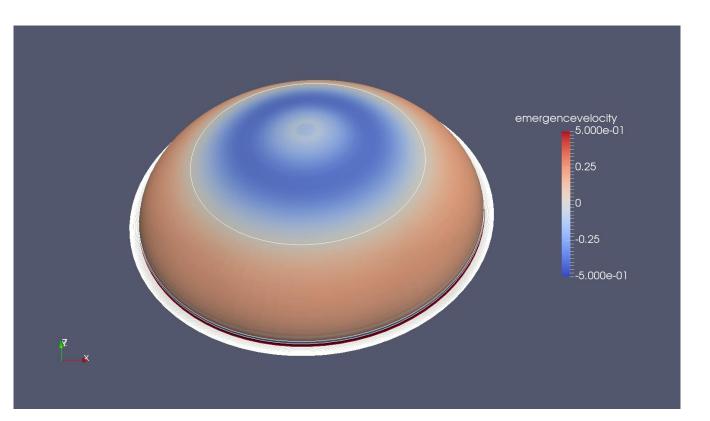
- Multi-threading (OpenMP) might replace MPI for workstations
- Optimizing for that, using SIMDinstructions within the code

Optimization of Elmer(/Ice) using OpenMP Threading and SIMD

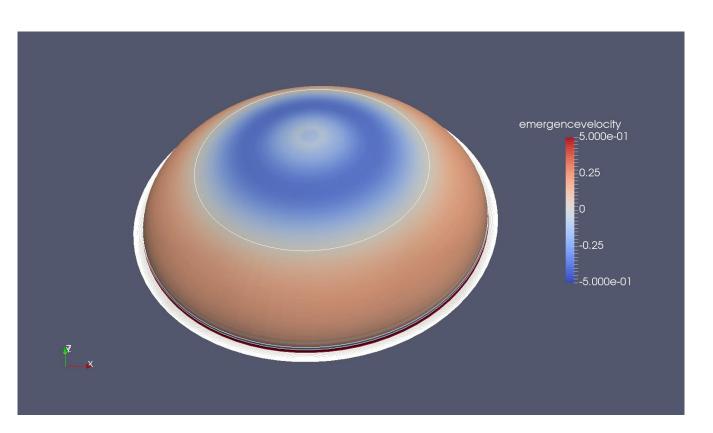
- Article in the proceedings which appear in the Lecture Notes in Computer Science (vol 10468), Springer
- The following slides are an excerpt of a presentation shown at this year's 13th International Workshop on OpenMP (IWOMP) in Stony Brook University, NY, USA
- Presentation permission granted by Intel Corp.

Byckling, M., J. Kataja, M. Klemm and T. Zwinger, 2017. *OpenMP SIMD Vectorization and Threading of the Elmer Finite Element Software*, **Proceedings 13th International Workshop on OpenMP**, **Springer Lecture Notes in Computer Sicnece**,123-137, doi:10.1007/978-3-319-65578-9_9

Suggested exercise


- Based on the analytic equilibrium profile (SIA) from Bueler
- Training accounts + remote desktop on taito.csc.fi
- 1. Creating the footprint mesh
 - Partitioning of mesh
- 2. Setting up diagnostic parallel run using
 - o Internal extrusion
 - Free surface imposed by external routine buelerprofile.f90
- 3. Running the case
 - With classic Navier-Stokes solver (MUMPS + cPardiso)
 - With ParStokes Solver

- Two different kind of footprint meshes
 - 1. footprint_bueler.geo for small runs on laptop (ParStokes
 might not scale)
 - 2. footprint_bueler_f.geo for node-size runs on supercomputer (< 24 partitions)</pre>
 - 3. footprint_bueler_ff.geo for (massive) parallel runs
- Create mesh from gmsh:
 - \$ gmsh -2 footprint_bueler.geo
- Convert mesh into Elmer mesh
 - \$ ElmerGrid 14 2 footprint_bueler.msh -autoclean


Add -metis 24 4 at the end to create a 24 partition parallel mesh

csc

- Using GetEmergenceVelocity after the Stokes solution to display the corresponding equilibrium accumulationablation function of the diagnostic solution
- Use footprint_

MUMPS	cPardiso	ParStokes
> 30 mins	> 30 mins	132.66 s

CSC