

Elmer/Ice advanced Workshop

22-24 November 2017

Marine ice-sheets and the Grounding line problem

Olivier GAGLIARDINI

IGE - Grenoble - France

Grounding Line

The Physics

- Dynamics of ice-sheets
- The transition zone
- Results from grounding line models

Equations to be solved

- The Schoof equation
- Solution of a contact problem

Implementation in Elmer/Ice (Stokes – see SSA presentation also)

- The basal boundary
- How to evaluate the contact?
- Mesh size issue
- Interpolation of the friction

✓ Example

- MISMIP test

2

Importance of ice-stream

Transition zone

Better understanding of the processes controlling ice-streams dynamics:

- grounding line dynamics
- stress transmission across grounding line

Ice Discharge

What will be the future contribution of Ice Discharge for the next centuries? Meed accurate description of the Grounding Line dynamics

EISMINT Results

No consensus on the results
No consensus on how the GL should be modelled
It is unclear wheter these results are indicative of neutral equilibrium

[Huybrechts, 1998]

Influnce of the horizontal grid size

[Vieli and Payne, 2005]

Poor ability of the model to capture the GL dynamic until recently

Grounding Line

✓ The Physics

- Dynamics of ice-sheets
- The transition zone
- Results from grounding line models

Equations to be solved

- The Schoof equation
- Solution of a contact problem

Implementation in Elmer/Ice

- The basal boundary
- How to evaluate the contact?
- Mesh size issue
- Interpolation of the friction
- ✓ Example
 - MISMIP test

Notation / Concept

How the grounding line evolves for different scenarii ?

Schoof's solution (2007) – MISI in 2D

- Confirms that there is no stable position of the GL on an upsloping bed
- For a given surface mass balance, gives the steady GL position (in 2D)

MISI in 3D

IGE

[Gudmundsson et al., 2012]

Marine ice sheets are not unconditionally unstable in two horizontal dimensions

MISI in 2D – non uniform friction parameter

[Brondex et al., 2017]

Stable positions can be found in the MISI for non uniform basal friction parameter

IGE

Equations to be solved

Ice - Bed contact

$$z_b = b$$
 and $-\sigma_{nn} > p_w$ \longrightarrow $u.n = 0$
 $u_t = f_t(\sigma_{nt})$

Ice - Sea

Buoyancy BC

BC Stokes: if $z_b(x,t) > b(x)$ $\sigma_{nn}(x) = \rho_w g(l(t) - z_b(x,t))$ and $\sigma_{nt}(x) = 0$ $z_b(x,t) = z_b(x,t-dt) + u_n\sqrt{1 + (dz_b/dx)^2} dt$ $\Rightarrow \sigma_{nn}(x) = \rho_w g(l(t) - z_b(x,t-dt)) - \rho_w g\sqrt{1 + (dz_b/dx)^2} dt.u_n$ (a) Elmer/Ice Course- 22-24 November 2017 - Grenoble

13

Grounding Line

✓ The Physics

- Dynamics of ice-sheets
- The transition zone
- Results from grounding line models

Equations to be solved

- The Schoof equation
- Solution of a contact problem

Implementation in Elmer/Ice

- The basal boundary
- How to evaluate the contact?
- Mesh size issue
- Interpolation of the friction

✓ Example

- MISMIP test

The basal boundary

Condition applied on the basal boundary depend if

- the ice is in contact with the bedrock
- or the ice is in contact with the sea

The limit between grounded and floating parts (the GL) is unknown and solution of the contact problem

Add a Mask variable (only on the basal surface) which tells if grounded, floating or at the GL

```
Mask = 1 if grounded
Mask = -1 if floating
Mask = 0 if at the GL
```


In Elmer, the use of a **conditional Dirichlet** condition allows to deal with this evolving limit.

Example in the SIF:

Mask = -1 \rightarrow the Dirichlet BC is not applied

Mask = 1 or 0 \rightarrow the Dirichlet BC $u_n = 0$ is applied

The contact problem

The contact problem

The condition $-\sigma_{nn} > p_w$ is in fact evaluated using nodal force (and not stress)

- the force exerted by the ice on the bed is given by the residual of the Stoles solution

In the Stokes solver

```
Exported Variable 1 = Flow Solution Loads[Stress Vector:2 CEQ Residual:1]
Calculate Loads = Logical True
```

- the nodal water force is the integrated water pressure with respect to the surface element

add a new solver to integrate the water pressure

Water force

```
VariableValues = 0.0 dp
DO t = 1, Solver % NumberOfActiveElements
    Element => GetActiveElement(t)
   IF (ParEnv % myPe .NE. Element % partIndex) CYCLE
    n = GetElementNOFNodes()
    BC => GetBC( Element )
   pwt(1:n) = -1.0 * ListGetReal(BC, 'External Pressure', n, &
                    Element % NodeIndexes , GotIt)
    CALL GetElementNodes ( Nodes )
    IP = GaussPoints( Element )
   DO p = 1, IP % n
      stat = ElementInfo( Element, Nodes, IP % U(p), IP % V(p), &
     IP % W(p), detJ, Basis, dBasisdx, ddBasisddx, .FALSE.)
     s = detJ * IP % S(p)
      Normal = NormalVector( Element, Nodes, IP % U(p), IP % V(p), .TRUE.)
      pwi = SUM(pwt(1:n)*Basis(1:n))
      PwVector(1:DIM) = pwi * Normal(1:DIM)
      DO i = 1, n
            Nn = Permutation(Element % NodeIndexes(i))
           DO j = 1, DIM
             VariableValues(DIM*(Nn-1)+j) = VariableValues(DIM*(Nn-1)+j) + PwVector(j) *
s * Basis(i)
           END DO
      END DO
    END DO
 END DO
  IF ( ParEnv % PEs>1 ) CALL ParallelSumVector( Solver % Matrix, VariableValues )
!-----
END SUBROUTINE GetHydrostaticLoads
                                 Elmer/Ice Course- 22-24 November 2017 - Grenoble
```

SUBROUTINE GetHydrostaticLoads (Model, Solver, dt, TransientSimulation)

The bed boundary condition

```
Boundary Condition 1
Target Boundaries = 1
  Body Id = 3
  Normal-Tangential Velocity = Logical True
  Flow Force BC = Logical True
I
! Bedrock conditions
I
  Slip Coefficient 2 = Variable Coordinate 1
                                                            The variable GroundedMask is updated in
    Real Procedure "ElmerIceUSF" "SlidCoef Contact"
                                                            this User Function SlidCoef Contact
    Sliding Law = String "Weertman"
    Weertman Friction Coefficient = Real $C
    Weertman Exponent = Real (1.0/n)
                                                            Here shown for Weertman, work
    Weertman Linear Velocity = Real 1.0
                                                            also for other friction laws
  Grounding line Definition = String "Discontinuous"
                                                          See note after
  Velocity 1 = \text{Real } 0.0
  Velocity 1 Condition = Variable GroundedMask
    Real MATC "tx + 0.5"
L
! Shelf conditions
                                                      Will only apply if the Dirichlet condition
  External Pressure = Variable Coordinate 2
                                                      Velocity 1 = 0 is not applied
     Real Procedure "ElmerIceUSF" "SeaPressure"
  Slip Coefficient 1 = Variable Coordinate 2
     Real Procedure "ElmerIceUSF" "SeaSpring"
End
                             Elmer/Ice Course- 22-24 November 2017 - Grenoble
```

The user function SlidCoef_Contact

Test the contact condition:

```
Normal = NormalValues(DIM*(NormalPerm(jj)-1)+1 : DIM*NormalPerm(jj))
Fwater = Hydro(DIM*(HydroPerm(jj)-1)+1 : DIM*HydroPerm(jj))
Fbase = ResidValues((DIM+1)*(ResidPerm(jj)-1)+1 : (DIM+1)*ResidPerm(jj)-1)
comp = ABS( SUM( Fwater * Normal ) ) - ABS( SUM( Fbase * Normal ) )
IF (comp >= 0.0 dp) GroundedMask(Nn) = -1.0 dp
```

and return the sliding coefficient: - appropriate if grounded - 0 if floating

END IF

Sensitivity to the grid size

IGE

Interpolation of the friction

Use Discontinous!

Or better: use a water pressure dependant friction law (see presentation on friction law) MISMIP3d - Ny = 20

[Gagliardini et al., 2016]

Interpolation of the friction

[Gagliardini et al., 2016]

PIG example (Favier et al., 2014)

Grounding Line

✓ The Physics

- Dynamics of ice-sheets
- The transition zone
- Results from grounding line models

Equations to be solved

- The Schoof equation
- Solution of a contact problem

Implementation in Elmer/Ice

- The basal boundary
- How to evaluate the contact?
- Mesh size issue
- Interpolation of the friction

Example

- MISMIP test

Example GL_MISMIP

http://elmerice.elmerfem.org/wiki/doku.php?id=problems:groundingline

[ELMER_TRUNK]/elmerice/Tests/GL_MISMIP

References

Durand G., O. Gagliardini, B. de Fleurian, T. Zwinger and E. Le Meur. 2009. Marine Ice-Sheet Dynamics: Hysteresis and Neutral Equilibrium, J. of Geophys. Res., Earth Surface, 114, F03009, doi:10.1029/2008JF001170.

Durand G., O. Gagliardini, T. Zwinger, E. Le Meur and R.C.A. Hindmarsh, 2009. Full-Stokes modeling of marine ice-sheets: influence of the grid size., Annals of Glaciology, 50(52), p. 109-114.

Gagliardini O., G. Durand, T. Zwinger, R. Hindmarsh and E. Le Meur, 2010. Coupling of ice-shelf melting and buttressing is a key process in ice-sheets dynamics, Geophys. Res. Lett., 37, L14501, doi:10.1029/2010GL043334.

Durand G., O. Gagliardini, L. Favier, T. Zwinger and E. le Meur, 2011. Impact of bedrock description on modeling ice sheet dynamic, Geophys. Res. Lett., 38, L20501, doi:10.1029/2011GL048892.

Favier L., O. Gagliardini, G. Durand, and T. Zwinger, 2012. A three-dimensional full Stokes model of the grounding line dynamics: effect of a pinning point beneath the ice shelf, The Cryosphere, 6, 101-112, doi:10.5194/tc-6-101-2012.

Pattyn, F., C. Schoof, L. Perichon, R.C.A. Hindmarsh, E. Bueler, B. de Fleurian, G. Durand, O. Gagliardini, R. Gladstone, D. Goldberg, G.H. Gudmundsson, V. Lee, F.M. Nick, A.J. Payne, D. Pollard, O. Rybak, F. Saito and A. Vieli, 2012. Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP, The Cryosphere, 6, 573-588, doi:10.5194/tc-6-573-2012

Gudmundsson, G. H., J. Krug, G. Durand, L. Favier and O. Gagliardini, 2012. The stability of grounding lines on retrograde slopes, The Cryosphere, 6, 1497-1505, doi:10.5194/tc-6-1497-2012.

Drouet, A. S., D. Docquier, G. Durand, R. Hindmarsh, F. Pattyn, O. Gagliardini, and T. Zwinger, 2013. Grounding line transient response in marine ice sheet models, The Cryosphere, 7, 395-406, doi:10.5194/tc-7-395-2013.

Pattyn, F, L. Perichon, G. Durand, L. Favier, O. Gagliardini, R. C. A. Hindmarsh, T. Zwinger, T. Albrecht, S. Cornford, D. Docquier, J. J. Fürst, D. Golberg, G. H. Gudmundsson, A. Humbert, M. Hütten, P. Huybrechts, G. Jouvet, T. Kleiner, E. Larour, D. Martin, M. Morlighem, A. J. Payne, D. Pollard, M. Rückamp, O. Rybak, H. Seroussi, M. Thoma and N. Wilkens, 2013. Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison, J. Glaciol., 59, doi:10.3189/2013JoG12J129.

Favier, L., G. Durand, S. L. Cornford, G. H. Gudmundsson, O. Gagliardini, F. Giller-Chaulet, T. Zwinger, A. J. Payne and A. M. Le Brocq, 2014. Retreat of Pine Island Glacier controlled by marine ice-sheet instability, Nature Climate Change, doi:10.1038/nclimate2094.

References

Krug, J., J. Weiss, O. Gagliardini and G. Durand, 2014. Combining damage and fracture mechanics to model calving, The Cryosphere, 8, 2101-2117, doi:10.5194/tc-8-2101-2014.

Todd, J., and P. Christophersen, 2014. Are seasonal calving dynamics forced by buttressing from ice mélange or undercutting by melting? Outcomes from full-Stokes simulations of Store Glacier, West Greenland, The Cryosphere, 8, 2353-2365, doi:10.5194/tc-8-2353-2014.

Krug, J., G. Durand, O. Gagliardini and J. Weiss, 2015. Modelling the impact of submarine frontal melting and ice mélange on glacier dynamics, The Cryosphere, 9, 989-1003, doi:10.5194/tc-9-989-2015.

Gagliardini O., J. Brondex, F. Gillet-Chaulet, L. Tavard, V. Peyaud and G. Durand, 2016. Brief communication: Impact of mesh resolution for MISMIP and MISMIP3d experiments using Elmer/Ice, The Cryosphere, 10, 307-312, doi:10.5194/tc-10-307-2016.

Gladstone, R.M., R.C. Warner, B.K. Galton-Fenzi, O. Gagliardini, T. Zwinger and R. Greve, 2017. Marine ice sheet model performance depends on basal sliding physics and sub-shelf melting, The Cryosphere, 11, 319-329, doi:10.5194/tc-11-319-2017.

~ 15 papers published so far using the contact problem implemented for the Stokes equations to solve the GL dynamics.

