Elmer/Ice Peer Reviewed Publications

Here is the list of peer-reviewed papers presenting developments or applications using Elmer/Ice. A list for the other publications (mainly Phd thesis) can be found on the Elmer/Ice wiki. Currently we are counting 160 articles since 2004.


Crawford, A.J., Benn, D.I., Todd, J, Åström, J.A, Bassis, J.N. and Zwinger, T., 2021. Marine ice-cliff instability modeling shows mixed-mode ice-cliff failure and yields calving rate parameterization. Nat Commun 12, 2701, doi:10.1038/s41467-021-23070-7.

Edwards, T.L, and 81 others, 2021. Projected land ice contributions to twenty-first-century sea level rise, Nature, 593, 74–82, doi:10.1038/s41586-021-03302-y.

Hellmann, S., J. Kerch, I. Weikusat, A. Bauder, M. Grab, G. Jouvet, M. Schwikowski and H. Maurer, 2021. Crystallographic analysis of temperate ice on Rhonegletscher, Swiss Alps, The Cryosphere, 15, 677–694, doi:10.5194/tc-15-677-2021.

Cheng, G., N. Kirchner and P. Lötstedt, 2021. Sensitivity of ice sheet surface velocity and elevation to variations in basal friction and topography in the full Stokes and shallow-shelf approximation frameworks using adjoint equations, The Cryosphere, 15, 715–742, doi:10.5194/tc-15-715-2021 

Vincent, C., D. Cusicanqui, B. Jourdain, O. Laarman, D. Six, A. Gilbert, A. Walpersdorf, A. Rabatel, L. Piard, F. Gimbert, O. Gagliardini, V. Peyaud, L. Arnaud, E. Thibert, F. Brun, and U. Nanni, 2021. Geodetic point surface mass balances: a new approach to determine point surface mass balances on glaciers from remote sensing measurements, The Cryosphere, 15, 1259–1276, doi:10.5194/tc-15-1259-2021

Maier, N., Gimbert, F., Gillet-Chaulet, F., Gilbert, A., 2021. Basal traction mainly dictated by hard-bed physics over grounded regions of Greenland. The Cryosphere, 15, 1435–1451, https://doi.org/10.5194/tc-15-1435-2021

Gladstone, R., Galton-Fenzi, B., Gwyther, D., Zhou, Q., Hattermann, T., Zhao, C., Jong, L., Xia, Y., Guo, X., Petrakopoulos, K., Zwinger, T., Shapero, D., and Moore, J., 2021. The Framework For Ice Sheet–Ocean Coupling (FISOC) V1.1. Geosci. Model Dev.,14,889–905. https://doi.org/10.5194/gmd-14-889-2021

Farinotti, D., Brinkerhoff, D.J., Fürst, J.J., Gantayat, P., Gillet-Chaulet, F., Huss, M., Leclercq, P.W., Maurer, H., Morlighem, M., Pandit, A., Rabatel, A., Ramsankaran, R., Reerink, T.J., Robo, E., Rouges, E., Tamre, E., van Pelt, W.J.J., Werder, M.A., Azam, M.F., Li, H., Andreassen, L.M., 2021. Results from the Ice Thickness Models Intercomparison eXperiment Phase 2 (ITMIX2). Front. Earth Sci. 8. https://doi.org/10.3389/feart.2020.571923


Jouvet G., S. Röllin, H. Sahli, J. Corcho, L. Gnägi, L. Compagno, D. Sidler, M. Schwikowski, A. Bauder and M. Funk, 2020. Mapping the age of ice of Gauligletscher combining surface radionuclide contamination and ice flow modeling, The Cryosphere, 14, 4233–4251, doi:10.5194/tc-14-4233-2020

Schannwell, C., R. Drews, T. A. Ehlers, O. Eisen, C. Mayer, M. Malinen, E. C. Smith and H. Eisermann, 2020. Quantifying the effect of ocean bed properties on ice sheet geometry over 40 000 years with a full-Stokes model, The Cryosphere, 14, 3917–3934, doi:10.5194/tc-14-3917-2020

Peyaud V., C. Bouchayer, O. Gagliardini, C. Vincent, F. Gillet-Chaulet, D. Six and O. Laarman, 2020. Numerical modeling of the dynamics of the Mer de Glace glacier, French Alps: comparison with past observations and forecasting of near-future evolution, The Cryosphere, 14, 3979–3994, doi:10.5194/tc-14-3979-2020

Brondex J., O. Gagliardini, F. Gillet-Chaulet and M. Chekki, 2020. Comparing the long-term fate of a snow cave and a rigid container buried at Dome C, Antarctica. Cold Regions Science and Technology, 103164, doi:10.1016/j.coldregions.2020.103164

Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe-Ouchi, A., Agosta, C., Albrecht, T., Asay-Davis, X., Barthel, A., Calov, R., Cullather, R., Dumas, C., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R., Gregory, J. M., Greve, R., Hattermann, T., Hoffman, M. J., Humbert, A., Huybrechts, P., Jourdain, N. C., Kleiner, T., Larour, E., Leguy, G. R., Lowry, D. P., Little, C. M., Morlighem, M., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Reese, R., Schlegel, N.-J., Shepherd, A., Simon, E., Smith, R. S., Straneo, F., Sun, S., Trusel, L. D., Van Breedam, J., van de Wal, R. S. W., Winkelmann, R., Zhao, C., Zhang, T., and Zwinger, T., 2020. ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century, The Cryosphere, 14, 3033–3070, doi:10.5194/tc-14-3033-2020

Hruby K., C. Gerbi, P. Koons, S. Campbell, C. Martín and R. Hawley, 2020. The impact of temperature and crystal orientation fabric on the dynamics of mountain glaciers and ice streams, Journal of Glaciology, doi:10.1017/jog.2020.44

Cheng G., P. Lötstedt and L. von Sydow, 2020. A full Stokes subgrid scheme in two dimensions for simulation of grounding line migration in ice sheets using Elmer/Ice (v8.3), Geosci. Model Dev., 13, 2245–2258, doi:10.5194/gmd-13-2245-2020

Gilbert A., A. Sinisalo, T. R. Gurung, K. Fujita, S. B. Maharjan, T. C. Sherpa and T. Fukuda, 2020. The influence of water percolation through crevasses on the thermal regime of a Himalayan mountain glacier, The Cryosphere, 14, 1273–1288, doi:10.5194/tc-14-1273-2020

Fourteau, K., F. Gillet-Chaulet, P. Martinerie and X. Faïn, 2020. A Micro-Mechanical Model for the Transformation of Dry Polar Firn Into Ice Using the Level-Set Method, Frontiers in Earth Science, 8, doi:10.3389/feart.2020.00101

Gillet-Chaulet, F., 2020. Assimilation of surface observations in a transient marine ice sheet model using an ensemble Kalman filter, The Cryosphere 14, 811–832, doi:10.5194/tc-14-811-2020

Cheng, G. and P. Lötstedt, 2020. Parameter sensitivity analysis of dynamic ice sheet models – numerical computations, The Cryosphere, 14, 673–691, doi:10.5194/tc-14-673-2020.

Helanow C., N. R. Iverson, L. K. Zoet and O. Gagliardini, 2020. Sliding relations for glacier slip with cavities over three‐dimensional beds, Geophysical Research Letters, 47, doi:10.1029/2019GL084924.

Licciulli C, P. Bohleber, J. Lier, O. Gagliardini, M. Hoelzle and O. Eisen, 2020. A full Stokes ice-flow model to assist the interpretation of millennial-scale ice cores atthe high-Alpine drilling site Colle Gnifetti, Swiss/Italian Alps. Journal of Glaciology, 66(255), 35-48, doi:10.1017/jog.2019.82.


Haseloff M., I. J. Hewitt and R. F. Katz, 2019. Englacial pore water localizes shear in temperate ice stream margins. Journal of Geophysical Research: EarthSurface,124, 2521-2541, doi:10.1029/2019JF005399.

Wu Z., H. Zhang, S. Liu, S., D. Ren, X. Bai, Z. Xun and Z. Ma, 2019. Fluctuation analysis in the dynamic characteristics of continental glacier based on Full-Stokes model, Sci Rep 9, 20245, doi:10.1038/s41598-019-56864-3.

Wang Z., G. Lin and S. Ai, 2019. How long will an Arctic mountain glacier survive? A case study of Austre Lovénbreen, Svalbard. Polar Research, doi:10.33265/polar.v38.3519.

Lilien D. A., I. Joughin, B. Smith and N. Gourmelen, 2019. Melt at grounding line controls observed and future retreat of Smith, Pope, and Kohler glaciers. The Cryosphere, 13, 2817-2834, doi:10.5194/tc-13-2817-2019.

Cowton T. R., J. A. Todd and D. Benn, 2019. Sensitivity of tidewater glaciers to submarine melting governed by plume locations. Geophysical Research Letters, 46, doi:10.1029/2019GL084215.

Holschuh N., D. A. Lilien and K. Christianson, 2019. Thermal weakening, convergent flow, and vertical heat transport in the Northeast Greenland Ice Stream shear margins. Geophysical Research Letters, 46, 8184-8193, doi:10.1029/2019GL083436.

van Dongen E.,G. Jouvet, A. Walter, J. Todd,T. Zwinger, I. Asaji, S. Sugiyama, F. Walter and M. Funk, 2019. Tides modulate crevasse opening prior to a major calving event at Bowdoin Glacier, Northwest Greenland. Journal of Glaciology 1-11, doi:10.1017/jog.2019.89.

Schannwell C., R. Drews, T.A. Ehlers, O. Eisen, C. Mayer and F. Gillet-Chaulet, 2019. Kinematic response of ice-rise divides to changes in ocean and atmosphere forcing, The Cryosphere, 13, 2673-2691, doi:10.5194/tc-13-2673-2019.

Nuth C., A. Gilbert, A. Köhler, R. McNabb, T. Schellenberger, H. Sevestre, C. Weidle, L. Girod, A. Luckman and A. Kääb, 2019. Dynamic vulnerability revealed in the collapse of an Arctic tidewater glacier. Scientific reports, 9, doi:10.1038/s41598-019-41117-0

Ai S., X. Ding, J. An, G. Lin, Z. Wang and M. Yan, 2019. Discovery of the Fastest Ice Flow along the Central Flow Line of Austre Lovénbreen, a Poly-thermal Valley Glacier in Svalbard. Remote Sensing, 11(12), 1488.

Thøgersen K., A. Gilbert, T. V. Schuler and A. Malthe-Sørenssen, 2019. Rate-and-state friction explains glacier surge propagation. Nature Communications, 10(1), 2823.

Compagno L., G. Jouvet, A. Bauder, M. Funk, G. J. Church, S. Leinss and M. P. Lüthi, 2019. Modeling the re-appearance of a crashed airplane on Gauligletscher, Switzerland, Frontiers in Earth Science, 7, 170, doi:10.3389/feart.2019.00170

Memon S., D. Vallot, T. Zwinger, J. Åström, H. Neukirchen, M. Riedel and M. Book, 2019. Scientific workflows applied to the coupling of a continuum (Elmer v8.3) and a discrete element (HiDEM v1.0) ice dynamic model, Geosci. Model Dev., 12, 3001-3015, doi:10.5194/gmd-12-3001-2019

Trevers M., A.J. Payne, S.L. Cornford and T. Moon, 2019. Buoyant forces promote tidewater glacier iceberg calving through large basal stress concentrations, The Cryosphere, 13, 1877-1887, doi:10.5194/tc-13-1877-2019.

Maier, N., N. Humphrey, J. Harper and T. Meierbachtol, 2019. Sliding dominates slow-flowing margin regions, Greenland Ice Sheet. Sci. Adv. 5, doi:10.1126/sciadv.aaw5406.

Seddik, H., R. Greve, D. Sakakibara, S. Tsutaki, M. Minowa and S. Sugiyama, 2019. Response of the flow dynamics of Bowdoin Glacier, northwestern Greenland, to basal lubrication and tidal forcing. J. Glaciol., 65 (250), 225-238, doi:10.1017/jog.2018.106

Favier L., N.C. Jourdain, A. Jenkins, N. Merino, G. Durand, O. Gagliardini, F. Gillet-Chaulet and P. Mathiot, 2019. Assessment of sub-shelf melting parameterisations using the ocean–ice-sheet coupled model NEMO(v3.6)–Elmer/Ice(v8.3). Geosci. Model Dev., 12, 2255-2283, doi:10.5194/gmd-12-2255-2019

Todd J., P. Christoffersen, T. Zwinger, P. Råback and D. Benn, 2019. Sensitivity of a calving glacier to ice–ocean interactions under climate change: new insights from a 3-D full-Stokes model. The Cryosphere, 13, 1681-1694, doi:10.5194/tc-13-1681-2019

Seroussi, et al., 2019. initMIP-Antarctica: an ice sheet model initialization experiment of ISMIP6. The Cryosphere, 13, doi:10.5194/tc-13-1441-2019

Farinotti D., H. Matthias, J. Fürst, J. Landmann, H. Machguth, F. Maussion and A. Pandit, 2019. A consensus estimate for the ice thickness distribution of all glaciers on Earth, Nature Geoscience, doi:10.1038/s41561-019-0300-3

Brondex J., F. Gillet-Chaulet and O. Gagliardini, 2019. Sensitivity of centennial mass loss projections of the Amundsen basin to the friction law, The Cryosphere, 13, 177-195, doi:10.5194/tc-13-177-2019


Goel, V., C. Martín and Matsuoka K., 2018. Ice-rise stratigraphy reveals changes in surface mass balance over the last millennia in Dronning Maud Land , J. Glac., 64, 128, 932-942, doi:10.1017/jog.2018.81.

Lilien D. A., I. Joughin, B. Smith and D. E. Shean, 2018. Changes in flow of Crosson and Dotson ice shelves, West Antarctica, in response to elevated melt, The Cryosphere, 12, 1415-1431, doi:10.5194/tc-12-1415-2018.

Gladstone, R. M., Xia, Y., and Moore, J.,2018. Neutral equilibrium and forcing feedbacks in marine ice sheet modelling. The Cryosphere, 12, 3605-3615. doi:10.5194/tc-12-3605-2018

van Dongen, E. C. H., Kirchner, N., van Gijzen, M. B., van de Wal, R. S. W., Zwinger, T., Cheng, G., Lötstedt, P., and von Sydow, L., 2018. Dynamically coupling full Stokes and shallow shelf approximation for marine ice sheet flow using Elmer/Ice (v8.3). Geosci. Model Dev., 11, 4563-4576. doi:10.5194/gmd-11-4563-2018

De Andrés, E., J. Otero, F. Navarro, A. Promińska, J. Lapazaran and W. Walczowski, 2018. A two-dimensional glacier–fjord coupled model applied to estimate submarine melt rates and front position changes of Hansbreen, Svalbard. Journal of Glaciology, 64(247), 745-758. doi: 10.1017/jog.2018.61

Fürst, J. J., F. Navarro, F. Gillet‐Chaulet, M. Huss, G. Moholdt, X. Fettweis, et al., 2018. The ice‐free topography of Svalbard. Geophysical Research Letters, 45. doi:10.1029/2018GL079734

De Fleurian, B., M. Werder, S. Beyer, D. Brinkerhoff, I. Delaney, C. Dow, C., J. Dows, O. Gagliardini, M.J. Hoffman, R. LeB Hooke, J. Seguinot, A.N. Sommers, 2018. SHMIP The subglacial hydrology model intercomparison Project. Journal of Glaciology, 1-20. doi:10.1017/jog.2018.78

Collao-Barrios, G., F. Gillet-Chaulet, V. Favier, G. Casassa, E. Berthier, I. Dussaillant, J. Mouginot and E. Rignot, 2018. Ice flow modelling to constrain the surface mass balance and ice discharge of San Rafael Glacier, Northern Patagonia Icefield. Journal of Glaciology, 64(246), 568-582, doi:10.1017/jog.2018.46

Gilbert A., S. Leinss, J. Kargel, A. Kääb, S. Gascoin, G. Leonard, E. Berthier, A. Karki and T. Yao, 2018. Mechanisms leading to the 2016 giant twin glacier collapses, Aru Range, Tibet, The Cryosphere, 12, 2883-2900, doi:10.5194/tc-12-2883-2018

Gagliardini O. and M. Werder, 2018. Influence of increasing surface melt over decadal timescales on land-terminating Greenland-type outlet glaciers, Journal of Glaciology, 64(247), 700-710, doi:10.1017/jog.2018.59

Zhao, C., R. M. Gladstone, R. C. Warner, M. A. King, T. Zwinger, and M. Morlighem, 2018. Basal friction of Fleming Glacier, Antarctica – Part 2: Evolution from 2008 to 2015, The Cryosphere 12, 2653-2666, doi:10.5194/tc-12-2653-2018

Zhao, C., R. M. Gladstone, R. C. Warner, M. A. King, T. Zwinger, and M. Morlighem, 2018. Basal friction of Fleming Glacier, Antarctica – Part 1: Sensitivity of inversion to temperature and bedrock uncertainty, The Cryosphere 12, 2637-2652, doi:10.5194/tc-12-2637-2018

Haseloff M., C. Schoof and O. Gagliardini, 2018. The role of subtemperate slip in thermally driven ice stream margin migration, The Cryosphere 12, 2545-2568, doi:10.5194/tc-12-2545-2018

Cohen, D., F. Gillet-Chaulet, W. Haeberli, H. Machguth, and U.H. Fischer, 2018. Numerical reconstructions of the flow and basal conditions of the Rhine glacier, European Central Alps, at the Last Glacial Maximum, The Cryosphere, 12, 2515-2544, doi: 10.5194/tc-12-2515-2018

Jong, L.M., R.M. Gladstone, B.K. Galton-Fenzi, and M.A.King, 2018. Simulated dynamic regrounding during marine ice sheet retreat, The Cryosphere, 12, 2425-2436 doi: 10.5194/tc-12-2425-2018

Cook, S., J. Åström, T. Zwinger, B.K. Galton-Fenzi, J.S. Greenbaum, and R. Coleman, 2018. Modelled fracture and calving on the Totten Ice Shelf, The Cryosphere, 12, 2401-2411,doi: 10.5194/tc-12-2401-2018

Mayer, C., J. Schaffer, T. Hattermann, D. Floricioiu, L. Krieger, P.A. Dodd, T. Kanzow, C. Licciulli, and C. Schannwell, 2018. Large ice loss variability at Nioghalvfjerdsfjorden Glacier, Northeast-Greenland, Nature Communications 9 (1), 2768, doi: 10.1038/s41467-018-05180-x

Passalacqua O., M. Cavitte, O. Gagliardini, F. Gillet-Chaulet, F. Parrenin, C. Ritz and D. Young, 2018. Brief communication: Candidate sites of 1.5 Myr old ice 37 km southwest of the Dome C summit, East Antarctica, The Cryosphere, 12, 2167-2174, doi:10.5194/tc-12-2167-2018

Solgaard, A., A. Messerli, T. Schellenberger, C. Hvidberg, A. Grinsted, M. Jackson, T. Zwinger, N.B. Karlsson, and D. Dahl-Jensen, 2018. Basal conditions at Engabreen, Norway, inferred from surface measurements and inverse modelling, Journal of Glaciology, 1-13. doi:10.1017/jog.2018.45

Zhao, L., J.C. Moore, B. Sun, X. Tang, and X. Guo, 2018. Where is the 1-million-year-old ice at Dome A?, The Cryosphere, 12, 1651-1663, doi:10.5194/tc-12

Gong, Y., Zwinger, T., Åström, J., Altena, B., Schellenberger, T., Gladstone, R., and Moore, J. C., 2018. Simulating the roles of crevasse routing of surface water and basal friction on the surge evolution of Basin 3, Austfonna ice cap. The Cryosphere, 12, 1563-1577, doi:10.5194/tc-12-1563-2018

Goelzer, H., S. Nowicki, T. Edwards, M. Beckley, A. Abe-Ouchi, A. Aschwanden, R. Calov, O. Gagliardini, F. Gillet-Chaulet, N. R. Golledge, J. Gregory, R. Greve, A. Humbert, P. Huybrechts, J. H. Kennedy, E. Larour, W. H. Lipscomb, S. Le clec'h, V. Lee, M. Morlighem, F. Pattyn, A. J. Payne, C. Rodehacke, M. Rückamp, F. Saito, N. Schlegel, H. Seroussi, A. Shepherd, S. Sun, R. van de Wal and F. A. Ziemen, 2018. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison, The Cryosphere, 12, 1433-1460. doi:10.5194/tc-12-1433-2018

Vallot, D., J. Åström, T. Zwinger, R. Pettersson, A. Everett, D.I. Benn, A. Luckman, W.J.J. van Pelt, F. Nick, and J. Kohler, 2018. Effects of undercutting and sliding on calving: a global approach applied to Kronebreen, Svalbard. The Cryosphere, 12, 609-625, doi:10.5194/tc-12-609-2018

Todd, J., P. Christoffersen, T. Zwinger, P. Råback, N. Chauché, D. Benn, A. Luckman, J. Ryan, N. Toberg, D. Slater, and A. Hubbard, 2018. A Full-Stokes 3D Calving Model applied to a large Greenlandic Glacier. Journal of Geophysical Research: Earth Surface. doi:10.1002/2017JF004349

Lefeuvre P.-M., T. Zwinger, M. Jackson, O. Gagliardini, G. Lappegard and J.O. Hagen, 2018. Stress Redistribution Explains Anti-correlated Subglacial Pressure Variations. Front. Earth Sci. 5:110. doi:10.3389/feart.2017.00110


Burr, A., W. Noël, P. Trecourt, M. Bourcier, F. Gillet-Chaulet, A. Philip and C. L. Martin, 2017. The anisotropic contact response of viscoplastic monocrystalline ice particles. Acta Materialia, 132, 576-585.

Vallot, D., R. Pettersson, A. Luckman, D. Benn, T. Zwinger, W.J.J. van Pelt, J. Kohler, M. Schäfer, B. Claremar and N.R.J. Hulton, 2017. Basal dynamics of Kronebreen, a fast-flowing tidewater glacier in Svalbard: Non-local spatio-temporal response to water input, Journal of Glaciology, 1-13, doi:doi:10.1017/jog.2017.69.

Brondex, J., O. Gagliardini, F. Gillet-Chaulet and G. Durand, 2017. Sensitivity of grounding line dynamics to the choice of the friction law, Journal of Glaciology, 63(241), 854-866, doi:10.1017/jog.2017.51.

Seddik, H., R. Greve, T. Zwinger, and S. Sugiyama, 2017. Regional modeling of the Shirase drainage basin, East Antarctica: full Stokes vs. shallow ice dynamics, The Cryosphere, 11, 2213-2229, doi:10.5194/tc-11-2213-2017.

Fürst, J. J., F. Gillet-Chaulet, T. J. Benham, J. A. Dowdeswell, M. Grabiec, F. Navarro, R. Pettersson, G. Moholdt, G., C. Nuth, B. Sass, K. Aas, X. Fettweis, C. Lang, T. Seehaus and M. Braun, 2017. Application of a two-step approach for mapping ice thickness to various glacier types on Svalbard, The Cryosphere, 11, 2003-2032, doi:10.5194/tc-11-2003-2017.

Benn, D.I., J. Åström, T. Zwinger, J. Todd, F.M. Nick, S. Cook, N.R.J. Hulton, and A. Luckman, 2017. Melt-under-cutting and buoyancy-driven calving from tidewater glaciers: new insights from discrete element and continuum model simulations, Journal of Glaciology, 1-12, doi:10.1017/jog.2017.41.

Einarsson, B., T. Jóhannesson, T. Thorsteinsson, E. Gaidos, and T. Zwinger, 2017. Subglacial flood path development during a rapidly rising jökulhlaup from the western Skaftá cauldron, Vatnajökull, Iceland, Journal of Glaciology, 1-13, doi:10.1017/jog.2017.33.

Välisuo, I., T. Zwinger and J. Kohler, 2017. Inverse solution of surface mass balance of Midtre Lovénbreen, Svalbard, Journal of Glaciology, 1-10, doi:10.1017/jog.2017.26.

Jouvet, G., Y. Weidmann, J. Seguinot, M. Funk, T. Abe, D. Sakakibara, H. Seddik and S. Sugiyama, 2017. Initiation of a major calving event on the Bowdoin Glacier captured by UAV photogrammetry, The Cryosphere, 11, 911-921, doi:10.5194/tc-11-911-2017.

Farinotti, D. and others, 2017. How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment, The Cryosphere, 11, 949-970, doi:10.5194/tc-11-949-2017.

Otero J, F.J. Navarro, J.J. Lapazaran, E. Welty, D. Puczko and R. Finkelnburg, 2017. Modeling the Controls on the Front Position of a Tidewater Glacier in Svalbard. Front. Earth Sci. 5:29. doi:10.3389/feart.2017.00029.

Gilbert, A., G. E. Flowers, G. H. Miller, K. A. Refsnider, N. E. Young, and V. Radić, 2017. The projected demise of Barnes Ice Cap: Evidence of an unusually warm 21st century Arctic, Geophys. Res. Lett., 44, doi:10.1002/2016GL072394.

Gladstone, R.M., R.C. Warner, B.K. Galton-Fenzi, O. Gagliardini, T. Zwinger and R. Greve, 2017. Marine ice sheet model performance depends on basal sliding physics and sub-shelf melting, The Cryosphere, 11, 319-329, doi:10.5194/tc-11-319-2017.

Zhang, T., S. Price, L. Ju, W. Leng, J. Brondex, G. Durand and O. Gagliardini, 2017. A comparison of two Stokes ice sheet models applied to the Marine Ice Sheet Model Intercomparison Project for plan view models (MISMIP3d), The Cryosphere, 11, 179-190, doi:10.5194/tc-11-179-2017.

Gong, Y., T. Zwinger, S. Cornford, R. Gladstone, M. Schäfer, and J.C. Moore, 2017. Importance of basal boundary conditions in transient simulations: case study of a surging marine-terminating glacier on Austfonna, Svalbard, Journal of Glaciology, pp. 1–12, doi:10.1017/jog.2016.121.


Gillet-Chaulet, F., G. Durand, O. Gagliardini, C. Mosbeux, J. Mouginot, F. Rémy, and C. Ritz, 2016. Assimilation of surface velocities acquired between 1996 and 2010 to constrain the form of the basal friction law under Pine Island Glacier, Geophys. Res. Lett., 43, doi:10.1002/2016GL069937.

Gilbert, A., G. E. Flowers, G. H. Miller, B. T. Rabus, W. Van Wychen, A. S. Gardner, and L. Copland, 2016. Sensitivity of Barnes Ice Cap, Baffin Island, Canada, to climate state and internal dynamics, J. Geophys. Res. Earth Surf., 121(8), 1516–1539, doi:10.1002/2016JF003839.

Mosbeux, C., F. Gillet-Chaulet and O. Gagliardini, 2016. Comparison of adjoint and nudging methods to initialise ice sheet model basal conditions, Geosci. Model Dev., 9, 2549-2562, doi:10.5194/gmd-9-2549-2016.

Passalacqua O., O. Gagliardini, F. Parrenin, J. Todd, F. Gillet-Chaulet and C. Ritz, 2016. Performance and applicability of a 2.5-D ice-flow model in the vicinity of a dome, Geosci. Model Dev., 9, 2301-2313, doi:10.5194/gmd-9-2301-2016.

Fürst, J. J., G. Durand, F. Gillet-Chaulet, L. Tavard, M. Rankl, M. Braun and O. Gagliardini, 2016. The safety band of Antarctic ice shelves, Nature Climate Change, doi:10.1038/NCLIMATE2912.

Gagliardini O., J. Brondex, F. Gillet-Chaulet, L. Tavard, V. Peyaud and G. Durand, 2016. Brief communication: Impact of mesh resolution for MISMIP and MISMIP3d experiments using Elmer/Ice, The Cryosphere, 10, 307-312, doi:10.5194/tc-10-307-2016.

Shapero, D.R., I.R. Joughin, K. Poinar, M. Morlighem and F. Gillet-Chaulet, 2016. Basal Resistance for Three of the Largest Greenland Outlet Glaciers, J. Geophys. Res. Earth Surf., 121, doi:10.1002/2015JF003643.

Brædstrup, C. F., D. L. Egholm, S. V. Ugelvig and V. K. Pedersen, 2016. Basal shear stress under alpine glaciers: insights from experiments using the iSOSIA and Elmer/Ice models, Earth Surf. Dynam., 4, 159-174, doi:10.5194/esurf-4-159-2016.

Ahlkrona, J., P. Lötstedt, N. Kirchner, and T. Zwinger, 2016. Dynamically coupling the non-linear Stokes equations with the shallow ice approximation in glaciology: Description and first applications of the ISCAL method. J. Comp. Phys., 308, 1-19, doi:10.1016/j.jcp.2015.12.025.


Schäfer M., M. Möller, T. Zwinger and J.C. Moore, 2015. Dynamic modelling of future glacier changes: mass-balance/elevation feedback in projections for the Vestfonna ice cap, Nordaustlandet, Svalbard. Journal of Glaciology, 61, 1121-1136, doi:10.3189/2015JoG14J184.

Haseloff M., C. Schoof and O. Gagliardini, 2015. A boundary layer model for ice stream margins. Journal of Fluid Mechanics, 781, 353-387 doi:10.1017/jfm.2015.503.

Gilbert A., C. Vincent, O. Gagliardini, J. Krug and E. Berthier, 2015. Assessment of thermal change in cold avalanching glaciers in relation to climate warming, Geophys. Res. Lett., 42, doi:10.1002/2015GL064838.

Fürst J. J., G. Durand, F. Gillet-Chaulet, N. Merino, L. Tavard, J. Mouginot, N. Gourmelen and O. Gagliardini, 2015. Assimilation of Antarctic velocity observations provides evidence for uncharted pinning points, The Cryosphere, 9, 1427-1443, doi:10.5194/tc-9-1427-2015.

Zwinger T., T. Malm,  M. Schäfer, R. Stenberg, and J.C. Moore, 2015. Numerical simulations and observations of the role of katabatic winds in the creation and maintenance of Scharffenbergbotnen blue ice area, Antarctica, The Cryosphere, 9, 1415-1426, doi:10.5194/tc-9-1415-2015.

Drews R., 2015. Evolution of ice-shelf channels in Antarctic ice shelves, The Cryosphere, 9, 1169-1181, doi:10.5194/tc-9-1169-2015.

Krug, J., G. Durand, O. Gagliardini and J. Weiss, 2015. Modelling the impact of submarine frontal melting and ice mélange on glacier dynamics, The Cryosphere, 9, 989-1003, doi:10.5194/tc-9-989-2015. 

Réveillet M., A. Rabatel, F. Gillet-Chaulet and A. Soruco, 2015. Simulations of changes to Glaciar Zongo, Bolivia (16°S), over the 21st century using a 3-D full-Stokes model and CMIP5 climate projections, Annals of Glaciol., 56(70), p. 89-97, doi:10.3189/2015AoG70A113

Drews, R, K. Matsuoka, C. Martín, D. Callens, N. Bergeot and F. Pattyn, 2015. Evolution of Derwael Ice Rise in Dronning Maud Land, Antarctica, over the last millennia, Journal of Geophys. Res. Earth Surf., doi:10.1002/2014JF003246


Åström, J.A., D. Vallot, M. Schäfer, E.Z. Welty, S. O’Neel, T.C. Bartholomaus,Yan Liu, T.I. Riikilä, T. Zwinger, J. Timonen, and J.C. Moore, 2014. Termini of calving glaciers as self-organized critical systems, Nature Geoscience, 7, 874-878, doi:10.1038/ngeo2290 [link to paper]

Todd, J., and P. Christophersen, 2014. Are seasonal calving dynamics forced by buttressing from ice mélange or undercutting by melting? Outcomes from full-Stokes simulations of Store Glacier, West Greenland , The Cryosphere, 8, 2353-2365, doi:10.5194/tc-8-2353-2014.

Krug, J., J. Weiss, O. Gagliardini and G. Durand, 2014. Combining damage and fracture mechanics to model calving, The Cryosphere, 8, 2101-2117, doi:10.5194/tc-8-2101-2014.

Schäfer, M., F. Gillet-Chaulet, R. Gladstone, R.A. Pettersson, V. Pohjola, T. Strozzi and T. Zwinger, 2014. Assessment of heat sources on the control of fast flow of Vestfonna ice cap, Svalbard, The Cryosphere, 8, 1951-1973, doi:10.5194/tc-8-1951-2014.

Gilbert, A., O. Gagliardini, C. Vincent, and P. Wagnon, 2014. A 3-D thermal regime model suitable for cold accumulation zones of polythermal mountain glaciers, J. Geophys. Res. Earth Surf., 119, doi:10.1002/2014JF003199.

Gladstone, R., M. Schäfer, T. Zwinger, Y. Gong, T. Strozzi, R. Mottram, F. Boberg, and J.C. Moore, 2014. Importance of basal processes in simulations of a surging Svalbard outlet glacier, The Cryosphere, 8, 1393-1405, doi:10.5194/tc-8-1393-2014.

Sun, B., Moore, J. C., Zwinger, T., Zhao, L., Steinhage, D., Tang, X., Zhang, D., Cui, X., and Martín, C., 2014. How old is the ice beneath Dome A, Antarctica?, The Cryosphere, 8, 1121-1128, doi:10.5194/tc-8-1121-2014.

Cook, S., I.C. Rutt, T. Murray, A. Luckman, T. Zwinger, N. Selmes, A. Goldsack, and T.D. James, 2014. Modelling environmental influences on calving at Helheim Glacier in eastern Greenland, The Cryosphere, 8, 827-841, doi:10.5194/tc-8-827-2014.

Zwinger, T., M. Schäfer, C. Martín, and J.C. Moore, 2014. Influence of anisotropy on velocity and age distribution at Scharffenbergbotnen blue ice area, The Cryosphere, 8, 607-621, doi:10.5194/tc-8-607-2014.

Sato, T., T. Shiraiwa, R. Greve, H. Seddik, E. Edelmann and T. Zwinger, 2014. Accumulation reconstruction and water isotope analysis for 1736–1997 of an ice core from the Ushkovsky volcano, Kamchatka, and their relationships to North Pacific climate records, Clim. Past, 10, 393-404, doi:10.5194/cp-10-393-2014.

Edwards, T. L., X. Fettweis, O. Gagliardini, F. Gillet-Chaulet, H. Goelzer, J.M. Gregory, M. Hoffman, P. Huybrechts, A.J. Payne, M. Perego, S. Price, A. Quiquet and C. Ritz, 2013. Effect of uncertainty in surface mass balance–elevation feedback on projections of the future sea level contribution of the Greenland ice sheet, The Cryosphere, 8, 195-208, doi:10.5194/tc-8-195-2014.

de Fleurian, B., O. Gagliardini, T. Zwinger, G. Durand, E. Le Meur, D. Mair, and P. Råback, 2014. A double continuum hydrological model for glacier applications, The Cryosphere, 8, 137-153, doi:10.5194/tc-8-137-2014.

Favier, L., G. Durand, S. L. Cornford, G. H. Gudmundsson, O. Gagliardini, F. Giller-Chaulet, T. Zwinger, A. J. Payne and A. M. Le Brocq, 2014. Retreat of Pine Island Glacier controlled by marine ice-sheet instability, Nature Climate Change, doi:10.1038/nclimate2094.

Martín, C., G.H. Gudmundsson and E.C. King 2014. Modelling of Kealey Ice Rise, Antarctica, reveals stable ice-flow conditions in East Ellsworth Land over millennia, J. Glaciol., 60, 139-146, doi:10.3189/2014JoG13J089

Zhao, L., L. Tian, T. Zwinger, R. Ding, J. Zong, Q. Ye, and J.C. Moore, 2014. Numerical simulations of Gurenhekou Glacier on the Tibetan Plateau, J. Glaciol., 60, 71-82, doi:10.3189/2014JoG13J126.


Ahlkrona, J., N. Kirchner, and P. Lötstedt, 2013. Accuracy of the zeroth- and second-order shallow-ice approximation – numerical and theoretical results, Geosci. Model Dev., 6, 2135-2152, doi:10.5194/gmd-6-2135-2013.

Ahlkrona, J., N. Kirchner, and P. Lötstedt, 2013. A Numerical Study of Scaling Relations for Non-Newtonian Thin-film Flows with Applications in Ice Sheet Modelling, Quarterly Journal Of Mechanics And Applied Mathematics, 66(4), 417-435, doi:10.1093/qjmam/hbt009. [link to paper]

Pattyn, F, L. Perichon, G. Durand, L. Favier, O. Gagliardini, R. C. A. Hindmarsh, T. Zwinger, T. Albrecht, S. Cornford, D. Docquier, J. J. Fürst, D. Golberg, G. H. Gudmundsson, A. Humbert, M. Hütten, P. Huybrechts, G. Jouvet, T. Kleiner, E. Larour, D. Martin, M. Morlighem, A. J. Payne, D. Pollard, M. Rückamp, O. Rybak, H. Seroussi, M. Thoma and N. Wilkens, 2013. Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison, J. Glaciol., 59, doi:10.3189/2013JoG12J129.

Adhikari, S. and S. Marshall, 2013. Influence of high-order mechanics on simulation of glacier response to climate change: insights from Haig Glacier, Canadian Rocky Mountains, Cryosphere, 7, 1527-1541, doi:10.5194/tc-7-1527-2013.

Åström, J.A., T. I. Riikilä , T. Tallinen, T. Zwinger, D. Benn, J. C. Moore, and J. Timonen, 2013. A particle based simulation model for glacier dynamics, The Cryosphere, 7, 1591-1602, 2013, doi:10.5194/tc-7-1591-2013 (uses Elmer/Ice as benchmark)

Nowicki, S., R. A. Bindschadler, A. Abe-Ouchi, A. Aschwanden, E. Bueler, H. Choi, J. Fastook, G. Granzow, R. Greve, G. Gutowski, U. C. Herzfeld, C. Jackson, J. Johnson, C. Khroulev, E. Larour, A. Levermann, W. H. Lipscomb, M. A. Martin, M. Morlighem, B. R. Parizek, D. Pollard, S. F. Price, D. Ren, E. Rignot, F. Saito, T. Sato, H. Seddik, H. Seroussi, K. Takahashi, R. Walker and W. L. Wang, 2013. Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project II: Greenland. Journal of Geophysical Research: Earth Surface 118 (2), 1025-1044, doi:10.1002/jgrf.20076. [link to paper]

Gagliardini, O., T. Zwinger, F. Gillet-Chaulet, G. Durand, L. Favier, B. de Fleurian, R. Greve, M. Malinen, C. Martín, P. Råback, J. Ruokolainen, M. Sacchettini, M. Schäfer, H. Seddik, and J. Thies, 2013. Capabilities and performance of Elmer/Ice, a new-generation ice sheet model, Geosci. Model Dev., 6, 1299-1318, doi:10.5194/gmd-6-1299-2013.

Shannon, S. R., A. J. Payne, I. D. Bartholomew, M. R. van den Broeke, T. L. Edwards, X. Fettweis, O. Gagliardini, F. Gillet-Chaulet, H. Goelzer, M. J. Hoffman, P. Huybrechts, D. W. F. Mair, P. W. Nienow, M. Perego, S. F. Price, C. J. P. Paul Smeets, A. J. Sole, R. S. W. van de Wal, and T. Zwinger, 2013. Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise, PNAS, 110(35), 14156--14161, doi:10.1073/pnas.1212647110.

Bindschadler, R. A., S. Nowicki, A. Abe-Ouchi, A. Aschwanden, H. Choi, J. Fastook, G. Granzow, R. Greve, G. Gutowski, U. C. Herzfeld, C. Jackson, J. Johnson, C. Khroulev, A. Levermann, W. H. Lipscomb, M. A. Martin, M. Morlighem, B. R. Parizek, D. Pollard, S. F. Price, D. Ren, F. Saito, T. Sato, H. Seddik, H. Seroussi, K. Takahashi, R. Walker and W. L. Wang, 2013. Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project), Journal of Glaciology, Vol. 59(214), p. 195-224, doi:10.3189/2013JoG12J125. [link to paper]

Drews, R., D. Steinhage, C. Martín and O. Eisen, 2013. Characterization of glaciological conditions at Halvfarryggen ice dome, Dronning Maud Land, Antarctica, Journal of Glaciology, 59(213), 2013, doi:10.3189/2013JoG12J134.

Drouet, A. S., D. Docquier, G. Durand, R. Hindmarsh, F. Pattyn, O. Gagliardini,  and T. Zwinger, 2013. Grounding line transient response in marine ice sheet models, The Cryosphere, 7, 395-406, doi:10.5194/tc-7-395-2013. [link to paper]


Gillet-Chaulet, F., O. Gagliardini, H. Seddik, M. Nodet, G. Durand, C. Ritz, T. Zwinger, R. Greve and D.G. Vaughan, 2012. Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model, The Cryosphere, 6, 1561-1576, doi:10.5194/tc-6-1561-2012. [link to paper]

Gudmundsson, G. H., J. Krug, G. Durand, L. Favier and O. Gagliardini, 2012. The stability of grounding lines on retrograde slopes, The Cryosphere, 6, 1497-1505, doi:10.5194/tc-6-1497-2012. [link to paper]

Adhikari, S. and S. J. Marshall, 2012. Parameterization of lateral drag in flowline models of glacier dynamicsJ. Glaciol., 58, 212, 1119-1132, doi:10.3189/2012JoG12J018. [link to paper]

Martín, C. and G. H. Gudmundsson, 2012. Effects of nonlinear rheology, temperature and anisotropy on the relationship between age and depth at ice divides, The Cryosphere, 6, 1221-1229, doi:10.5194/tc-6-1221-2012. [link to paper]

Adhikari, S. and S. J. Marshall, 2012. Glacier volume-area relation for high-order mechanics and transient glacier states, Geophys. Res. Lett., 39, L16505, doi:10.1029/2012GL052712.

Pattyn, F., C. Schoof, L. Perichon, R.C.A. Hindmarsh, E. Bueler, B. de Fleurian, G. Durand, O. Gagliardini, R. Gladstone, D. Goldberg, G.H. Gudmundsson, V. Lee, F.M. Nick, A.J. Payne, D. Pollard, O. Rybak, F. Saito and A. Vieli, 2012. Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP, The Cryosphere, 6, 573-588, doi:10.5194/tc-6-573-2012. [link to paper]

Schäfer, M., T. Zwinger, P. Christoffersen, F. Gillet-Chaulet, K. Laakso, R. Pettersson, V. A. Pohjola, T. Strozzi, and J. C. Moore, 2012. Sensitivity of basal conditions in an inverse model: Vestfonna Ice-Cap, Nordaustlandet/Svalbard, The Cryosphere, 6, 771-783, doi:10.5194/tc-6-771-2012. [link to paper]

Seddik H., R. Greve, T. Zwinger, F. Gillet-Chaulet and O. Gagliardini, 2012. Simulations of the Greenland ice sheet 100 years into the future with the full Stokes model Elmer/Ice, J. Glaciol., 58(209), 427-440. [link to paper]

Favier L., O. Gagliardini, G. Durand,  and T. Zwinger, 2012. A three-dimensional full Stokes model of the grounding line dynamics: effect of a pinning point beneath the ice shelf, The Cryosphere, 6, 101-112, doi:10.5194/tc-6-101-2012. [link to paper]

Adhikari, S. and S.J. Marshall, 2012. Modelling dynamics of valley glaciers, In. Miidla, P. (ed.), Numerical Modelling, InTech, 115-142, ISBN 978-953-51-0219-9. [link to paper]

Cook S., T. Zwinger, I.C. Rutt, S. O’Neel and T. Murray, 2012. Testing the effect of water in crevasses on a physically-based calving model, Annals Glaciol. 53(60), doi: 10.3189/2012AoG60A107


Durand G., O. Gagliardini, L. Favier, T. Zwinger and E. le Meur, 2011. Impact of bedrock description on modeling ice sheet dynamic, Geophys. Res. Lett., 38, L20501, doi:10.1029/2011GL048892.

Jay-Allemand M., F. Gillet-Chaulet, O. Gagliardini and M. Nodet, 2011. Investigating changes in basal conditions of Variegated Glacier prior to and during its 1982–1983 surge, The Cryosphere, 5, p. 659-672, doi:10.5194/tc-5-659-2011. [link to paper]

Seddik H., R. Greve, T. Zwinger and L. Placidi, 2011. A full-Stokes ice flow model for the vicinity of Dome Fuji, Antarctica, with induced anisotropy and fabric evolution, The Cryosphere, 5, 495-508, doi:10.5194/tc-5-495-2011. [link to paper]

Gagliardini O., F. Gillet-Chaulet, G. Durand, C. Vincent and P. Duval, 2011. Estimating the risk of glacier cavity collapse during artificial drainage: the case of Tête Rousse Glacier, Geophys. Res. Lett., 38, L10505, doi:10.1029/2011GL047536.

Gillet-Chaulet, F. and R.C.A. Hindmarsh, 2011. Flow at ice-divide triple junctions: 1. Three-dimensional full-Stokes modeling, J. Geophys. Res., 116(F2), F02023, doi:10.1029/2009JF001611.

Gillet-Chaulet, F., R.C.A. Hindmarsh, H.F.J. Corr, E.C. King, and A. Jenkins, 2011. In-situ quantification of ice rheology and direct measurement of the Raymond Effect at Summit, Greenland using a phase-sensitive radar,  Geophys. Res. Lett., 38, L24503, doi:10.1029/2011GL049843.

Adhikari, S. and S.J. Marshall, 2011. Improvements to shear-deformational models of glacier dynamics through a longitudinal stress factor, J. Glaciol., 57, 206, 1003-1016.


Gagliardini O., G. Durand, T. Zwinger, R. C. A. Hindmarsh and E. Le Meur, 2010. Coupling of ice-shelf melting and buttressing is a key process in ice-sheets dynamics, Geophys. Res. Lett., 37, L14501, doi:10.1029/2010GL043334.

Ma Y., O. Gagliardini, C. Ritz, F. Gillet-Chaulet, G. Durand and M. Montagnat, 2010. Enhancement factors for grounded ice and ice shelves inferred from an anisotropic ice-flow model, J. Glaciol., 56(199), 805-812.


Zwinger T. and J.C. Moore, 2009. Diagnostic and prognostic simulations with a full Stokes model accounting for superimposed ice of Midtre Lovénbreen, Svalbard, The Cryosphere, 3, 217-229, doi:10.5194/tc-3-217-2009 [link to paper]

Durand G., O. Gagliardini, T. Zwinger, E. Le Meur and R.C.A. Hindmarsh, 2009. Full Stokes modeling of marine ice sheets: influence of the grid size, Ann. Glaciol., 50(52), 109–114.

Moore P.L., N.R. Iverson and D. Cohen, 2009. Ice flow across a warm-based/cold-based transition at a glacier margin, Ann. Glaciol., 50(52), 1–8.

Durand G., O. Gagliardini, B. de Fleurian, T. Zwinger, and E. Le Meur, 2009. Marine ice sheet dynamics: Hysteresis and neutral equilibrium, J. Geophys. Res., 114, F03009, doi:10.1029/2008JF001170.


Pattyn F., L. Perichon, A. Aschwanden, B. Breuer, B. de Smedt, O. Gagliardini, G.H. Gudmundsson, R.C.A. Hindmarsh, A. Hubbard, J.V. Johnson, T. Kleiner, Y. Konovalov, C. Martin, A.J. Payne, D. Pollard, S. Price, M. Rückamp, F. Saito, F., O. Souček, S. Sugiyama and T. Zwinger, 2008. Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP–HOM) The Cryosphere, 2, 95-108, ISSN 1994-0426. [link to paper]

Gagliardini O. and T. Zwinger, 2008. The ISMIP-HOM benchmark experiments performed using the Finite-Element code Elmer , The Cryosphere, 2, 67-76, ISSN 1994-0416. [link to paper]


Zwinger T., R. Greve, O. Gagliardini, T. Shiraiwa and M. Lyly, 2007. A full Stokes-flow thermo-mechanical model for firn and ice applied to the Gorshkov crater glacier, Kamchatka, Annals of Glaciology, 45, 29-37. [link to paper]

Gagliardini, O., D. Cohen, P. Råback and T. Zwinger, 2007. Finite-element modeling of subglacial cavities and related friction law , J. Geophys. Res., 112, F0227, doi:10.1029/2006JF000576.

Durand G., F. Gillet-Chaulet, A. Svensson, O. Gagliardini, S. Kipfstuhl, J. Meyssonnier, F. Parrenin, P. Duval and D. Dahl-Jensen, 2007. Change of the ice rheology with climatic transitions – implication on ice flow modelling and dating of the EPICA Dome C core, Clim. Past., 3, 155-167.


Gillet-Chaulet F., O. Gagliardini, J. Meyssonnier, T. Zwinger, J. Ruokolainen, 2006. Flow-induced anisotropy in polar ice and related ice-sheet flow modelling, J. Non-Newtonian Fluid Mech. 134, p. 33-43.


 Le Meur E., O. Gagliardini, T. Zwinger, J. Ruokolainen, 2004. Glacier flow modelling: a comparison of the Shallow Ice Approximation and the full-Stokes equation, C. R. Physique 5, 709-722. [link to paper]


  • Created on .
  • Hits: 21131

Elmer/Ice project © 2020 -- Conception : iGrafic