Elmer/Ice News

Coupling Elmer/Ice to a discrete element model

MemonEtal2019This new paper utilizes a workflow management system (WMS) to couple Elmer/Ice to HiDEM in order to enable a high resolution, physically accurate representation of calving.  Scientific computing applications involving complex simulations and data-intensive processing are often composed of multiple tasks forming a workflow of computing jobs. Scientific communities running such applications on computing resources often find it cumbersome to manage and monitor the execution of these tasks and their associated data. These workflow implementations usually add overhead by introducing unnecessary input/output (I/O) for coupling the models and can lead to sub-optimal CPU utilization. Furthermore, running these workflow implementations in different environments requires significant adaptation efforts, which can hinder the reproducibility of the underlying science. High-level scientific WMS can be used to automate and simplify complex task structures by providing tooling for the composition and execution of workflows – even across distributed and heterogeneous computing environments. The WMS approach allows users to focus on the underlying high-level workflow and avoid low-level pitfalls that would lead to non-optimal resource usage while still allowing the workflow to remain portable between different computing environments. As a case study, we apply the UNICORE workflow management system to enable the coupling of a glacier flow model and calving model which contain many tasks and dependencies, ranging from pre-processing and data management to repetitive executions in heterogeneous high-performance computing (HPC) resource environments. Using the UNICORE workflow management system, the composition, management, and execution of the glacier modelling workflow becomes easier with respect to usage, monitoring, maintenance, reusability, portability, and reproducibility in different environments and by different user groups. Last but not least, the workflow helps to speed the runs up by reducing model coupling I/O overhead and it optimizes CPU utilization by avoiding idle CPU cores and running the models in a distributed way on the HPC cluster that best fits the characteristics of each model.

Read more: Memon S., D. Vallot, T. Zwinger, J. Åström, H. Neukirchen, M. Riedel and M. Book, 2019. Scientific workflows applied to the coupling of a continuum (Elmer v8.3) and a discrete element (HiDEM v1.0) ice dynamic model, Geosci. Model Dev., 12, 3001-3015 DOI: 10.5194/gmd-12-3001-2019

  • Created on .
  • Last updated on .
  • Hits: 781

A new study on tidewater glacier iceberg calving

Iceberg calving parameterisations currently implemented in ice sheet models do not reproduce the full observed range of calving behaviours. For example, though buoyant forces at the ice front are known to trigger full-depth calving events on major Greenland outlet glaciers, a multi-stage iceberg calving event at Jakobshavn Isbræ isTreversEtAl 2019 unexplained by existing models. To explain this and similar events, we propose a notch-triggered rotation mechanism, whereby a relatively small subaerial calving event triggers a larger full-depth calving event due to the abrupt increase in buoyant load and the associated stresses generated at the ice–bed interface. We investigate the notch-triggered rotation mechanism by applying a geometric perturbation to the subaerial section of the calving front in a diagnostic flow-line model of an idealised glacier snout, using the full-Stokes, finite element method code Elmer/Ice. Different sliding laws and water pressure boundary conditions are applied at the ice–bed interface. Water pressure has a big influence on the likelihood of calving, and stress concentrations large enough to open crevasses were generated in basal ice. Significantly, the location of stress concentrations produced calving events of approximately the size observed, providing support for future application of the notch-triggered rotation mechanism in ice-sheet models.


Read more: Trevers M., A.J. Payne, S.L. Cornford and T. Moon, 2019. Buoyant forces promote tidewater glacier iceberg calving through large basal stress concentrations, The Cryosphere, 13, 1877-1887 DOI: 10.5194/tc-13-1877-2019

  • Created on .
  • Last updated on .
  • Hits: 671

Sliding dominates slow-flowing margin regions, Greenland Ice Sheet

maier2019On the Greenland Ice Sheet (GrIS), ice flow due to deformation and sliding across the bed delivers ice to lower- elevation marginal regions where it can melt. We measured the two mechanisms of motion using a three- dimensional array of 212 tilt sensors installed within a network of boreholes drilled to the bed in the ablation zone of GrIS. Unexpectedly, sliding completely dominates ice motion all winter, despite a hard bedrock sub- strate and no concurrent surface meltwater forcing. Modeling constrained by detailed tilt observations made along the basal interface suggests that the high sliding is due to a slippery bed, where sparsely spaced bed- rock bumps provide the limited resistance to sliding. The conditions at the site are characterized as typical of ice sheet margins; thus, most ice flow near the margins of GrIS is mainly from sliding, and marginal ice fluxes are near their theoretical maximum for observed surface speeds.

Read more: Maier, N., N. Humphrey, J. Harper and T. Meierbachtol, 2019. Sliding dominates slow-flowing margin regions, Greenland Ice Sheet. Sci. Adv. 5, DOI: 10.1126/sciadv.aaw5406

  • Created on .
  • Last updated on .
  • Hits: 6969

Elmer/Ice project © 2020 -- Conception : iGrafic