Basal traction mainly dictated by hard-bed physics over grounded regions of Greenland
On glaciers and ice sheets, identifying the relationship between velocity and traction is critical to constrain the bed physics that controls ice flow. We determine the spatial relationship between velocity and traction in all eight major drainage catchments of Greenland. We find the relationships are consistent with our current understanding of basal physics in each catchment.
We identify catchments that predominantly show Mohr–Coulomb-like behavior typical of deforming beds or significant cavitation, as well as catchments that predominantly show rate-strengthening behavior typical of Weertman-type hard-bed physics.
Overall, the traction relationships suggest that the flow field and surface geometry of the grounded regions in Greenland is mainly dictated by Weertman-type hard-bed physics up to velocities of approximately 450m/yr, except within the Northeast Greenland Ice Stream and areas near floatation.
The results and analysis serve as a first constraint on the physics of basal motion over the grounded regions of Greenland and provide unique insight into future dynamics and vulnerabilities in a warming climate.
Read More: Maier, N., Gimbert, F., Gillet-Chaulet, F., Gilbert, A., 2021. Basal traction mainly dictated by hard-bed physics over grounded regions of Greenland. The Cryosphere 15, 1435–1451. https://doi.org/10.5194/tc-15-1435-2021
- Created on .
- Last updated on .
- Hits: 806