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• Saturated porous medium that 
consists of skeleton of rock or soil, ice 
and groundwater of water and 
dissolved salts :

1. Heat transfer

2. Groundwater flow of saturated 
aquifer (Darcy)

3. Solute transport within groundwater

4. Deformation of bedrock (porosity)

Permafrost model

Picture: J. Hartikainen
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• Multiple bodies

• Different mesh-
concepts:
o Ice-sheet: structured, 

layered mesh
oBedrock: unstructured, in 

places high-resolution 
mesh

oOffset for displacement: 
Model for glacial isostatic 
adjustment (LLRA)

Permafrost Model
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Maxwell rheology

• Standard FE linear elasticity:

• Elastic rheology: stress as a function of reversible deformation

• Visco-elastic: (partly non-reversible)  deformation as a 
function of

viscous                  and             elastic  contribution
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S U M M A R Y
Modifications to commercial finite element (FE) packages must be applied before they can be
used for geophysical studies involving long wavelength deformation or viscoelasticity. This
paper provides in detail how and why the commercial codes have to be modified when incom-
pressibility is assumed. Both the non-self-gravitating flat earth and self-gravitating spherical
earth will be considered. The latter involves an iterative procedure, which converges within 5
iterations. This is demonstrated both analytically and numerically. In addition, implementation
of the gravitationally self-consistent sea level equation on a self-gravitating spherical earth is
also described. Good agreement between numerical results obtained with this coupled finite-
element method and the conventional spectral method is also demonstrated. In all cases, the
interpretation of the outputs of FE models are particularly important in modelling the state of
stress.

Key words: finite element method, glacial rebound, mantle viscosity, sea level, stress distri-
bution.

1 I N T RO D U C T I O N

It is well known that the finite element (FE) method is a useful
technique in modelling deformation and stress in the earth: espe-
cially if the problem involves complicated geometry with large vari-
ations of material properties in arbitrary directions (e.g. Gasperini &
Sabadini 1990; Wu 1991; Kaufmann et al. 1997, 2000) or when non-
linear rheology is involved (e.g. Gasperini et al. 1992; Wu 1992b,
1999; Giunchi & Spada 2000; Wu 2002a,b,c). Because a number
of well-tested, engineering oriented FE packages are available com-
mercially, geoscientists are tempted to use them for the study of
earth deformation and the state of stress. However, these commer-
cial FE packages are mainly designed for engineering applications
where the stiffness equation is solved. By the principle of virtual
work, the stiffness equation is equivalent to the equation of motion:

∇⃗ · τ = 0, (1)

where τ is the stress tensor. For geophysical applications, eq. (1) is
overly simplistic because it does not include the important restor-
ing force of isostasy and self-gravitation (see eq. 3). Thus, eq. (1)
is only applicable to geophysical problems involving elastic de-
formation with short wavelengths (p. 38 of Cathles 1975; Wu
1992a).

Although the FE technique has been used in numerous studies
during the last decade, I know of no publication that discusses
in detail how commercial FE packages can be modified for geo-
physical problems such as the post-glacial readjustment process.
There are papers that mention the Wrinkler foundation (Williams &
Richardson 1991) as a remedy to the restoring force of isostasy in a

flat earth, but the reason behind it and the implication of its inclu-
sion to stress studies have not been discussed. As we shall see below,
the attachment of Wrinkler foundation means that the stress output
from FE calculations must be modified before they can be identi-
fied with the usual physical quantity. This is an important point that
may not be well understood. Furthermore, for deformations with
wavelengths much larger than the diameter of the Earth, the spher-
ical shape (Amelung & Wolf 1994) and self-gravity of the solid
earth and its oceans must be included. This involves solving the
gravitationally consistent sea level equation (Farrell & Clark 1976).
Current development of the sea level equation is in terms of the
pseudo-spectral normal mode method (Mitrovica & Peltier 1991)
and the calculation of relaxation spectrum and excitation strengths
of Love numbers (Wu & Peltier 1982). Because the FE approach
does not calculate relaxation spectrum nor excitation strengths of
Love numbers, it is not immediately clear how the sea level equation
can be implemented with the FE method.

This paper discusses in detail the problem of modifying commer-
cial FE packages for the study of deformation in a viscoelastic earth.
Section 2 reviews the equations of motion and the boundary condi-
tions used for deformation studies. In Section 3, our focus is on a
non-self-gravitating, incompressible viscoelastic flat earth. The in-
clusion of self-gravitation in a spherical earth and its validation will
be described in Section 4. Finally, the inclusion of self-gravity in the
oceans and a validation of the method is also provided. Throughout
the paper, the deformations are considered to be the result of glacial
isostatic adjustment, but the coupled FE technique considered here
can be extended to tidal, internal loading and other geophysical
loading problems.
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Implementation into Elmer

• Introduction of visco-elastic stress (Wu 2004)

• At the same time we introduce a pressure Π to enable 
incompressibility 

• Additional term accounting for restoring force by specific 
weight gradient

• This is not standard in commercial FE packages, hence needs 
to be “cheated” around by putting jump-conditions on inter-
layer boundaries (Wrinkler foundations)

• In Elmer we can include this, which introduces the right 
boundary condition naturally over 
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2 E Q UAT I O N O F M O T I O N A N D
B O U N DA RY C O N D I T I O N S
F O R E L A S T I C E A RT H

In the timescale of the post-glacial adjustment process, deformation
of the Earth is viscoelastic. This means that when excited by a load,
the mantle initially responds like an elastic medium, but then flows
like a viscous fluid over long timescales. The transition between
elastic and viscous behaviour will be described by Maxwell rheology
in this paper (see Wu & Peltier 1982; Martinec 2000):

∂tτ = ∂tτ
0 − µ

ν
(τ −$I ), (2a)

τ
0 = λθ I + 2µε, (2b)

$ = 1
3σkk, (2c)

where I is the identity matrix (with 1 along the diagonal and 0
elsewhere), τ and ε are the stress and strain tensors, θ = εkk is the
dilatation and λ, µ , ν are the two Lamé parameters and viscosity,
respectively. For an incompressible material, λ→ ∞ but θ → 0 so
thatλθ =$. In conventional methods, the Correspondence Principle
(e.g. Cathles 1975; Wu & Peltier 1982) is invoked, and the problem
in viscoelasticity is transformed to an associated elastic problem.
For the FE method, one starts with the elastic equations of motion
and boundary conditions and the stress and strain are updated from
eq. (2) with some time stepping procedure (see Gasperini & Sabadini
1990; Martinec 2000, for details). Because both conventional and
FE methods start with the elastic equations of motion and boundary
conditions, this is where we shall begin.

For geophysical applications where the inertial force can be ne-
glected, the linearized elastic equation of motion is typically of the
form (eq. II-22 in Cathles 1975; Wu & Peltier 1982):

∇⃗ · τ − ∇⃗(u⃗ · ρo g o r̂ ) − ρ1g o r̂ − ρo ∇⃗φ1 = 0. (3)

Here u⃗ is the displacement vector, r̂ is a unit vector in the radial
direction and ρ, g , φ are density, gravitational acceleration and
gravitational potential, respectively. The subscript zero refers to the
hydrostatic background state and the subscript one refers to the per-
turbed state. In particular, φ1 contains the contribution of both the
applied load and the redistribution of mass as a result of the mo-
tion of water, ice and mantle rock. The first term in eq. (3) is the
divergence of stress that also appears in eq. (1). The second term rep-
resents the advection of pre-stress (Love 1911, section 154), where
the hydrostatic background stress caused by the initial gravity field
(∇⃗φo = g o r̂ ) is carried by the material in motion. This term can be
identified as the restoring force of isostasy. Although it does not ap-
pear in the viscous equation of motion (see Cathles 1975, equation
II-23), it is required here so that the correct boundary condition be
satisfied in the viscous limit (Wu & Peltier 1982). The importance
of this term has been discussed in Wu (1992a), where it is shown
that by neglecting it, there will be no viscoelastic gravitational re-
laxation: any mass left on the surface of the Earth will sink to the
centre resulting in a singular solution at large times. The third term
in eq. (3) is the result of internal buoyancy and the perturbed density
is given by the linearized continuity equation:

ρ1 = −ρ0∇⃗ · u⃗ − u⃗ · (∂rρ0)r̂ . (4)

In the absence of a large and negative ambient density gradient (last
term in eq. 4), internal buoyancy counteracts the restoring force of
isostasy (because the second and third terms in eq. 3 have compara-

ble magnitude but opposite signs) thus instability arises (Vermeersen
& Mitrovica 2000; Klemann et al. 2003). To avoid any instability,
earth material is assumed to be incompressible here, so that internal
buoyancy vanishes within homogeneous elements. One may keep
the material to be compressible in eq. (2), but take internal buoyancy
to be zero. In this case, instability will not arise either (Klemann et al.
2003), but such separation of compressibility into material part and
internal buoyancy is not physically possible. Finally, the last term in
eq. (3) is the result of self-gravitation, which says that the source of
the gravity field is mass distribution in the Earth and any movement
of earth material causes the gravity field and its potential to change
according to Poisson’s equation:

∇2φ1 = 4πGρ1. (5)

If internal buoyancy vanishes, then the right side of eq. (5) also
vanishes and we have a Laplace equation instead.

In order to use the FE method to model the deformation of a
viscoelastic earth, eq. (3) must be transformed to the same form as
eq. (1). The next two sections describe such transformations for a
flat earth and a spherical self-gravitating earth. Such transformations
not only affect the equations of motion but also the normal stress
boundary conditions as well. For completeness, the usual boundary
conditions are listed below.

For an elastic earth, the boundary conditions, beside the continuity
of potential [φ1]+− =0, are (Cathles 1975, p. 16–20, also Wu & Peltier
1982, eq. 48):

(i) At the surface of the Earth: [τ · r̂ ]+− = 0, so that for normal
stress τ rr|z=0 = −σ g o and for shear stress τ rθ |z=0 = 0. Here σ is the
surface mass density of the applied surface load and u r = u⃗ · r̂ . In
addition, the gradient of potential satisfies [∇φ1 · r̂ ]+− + 4πGρo u r =
4πGσ at r = a.

(ii) At internal solid–solid boundaries, [τ · r̂ ]+− = 0, so that
τ rr|+− = τ rθ |+− = 0 at these interfaces. In addition, there is conti-
nuity of displacements [u⃗ ]+− = 0 and [∇φ1 · r̂ + 4πGρo u r]+− = 0.

(iii) At the core–mantle boundary (CMB), [τ · r̂ ]+ = ρ f g o u rr̂ .
Here ρ f is the density at the top of the fluid core and u r is the radial
displacement of the elastic–fluid boundary. Also, the shear stress
vanishes at the CMB, [∇φ1 · r̂ ]+− + 4πG[ρo ]+−u r = 0 and [u⃗ ]+− = 0.
For the last condition, it should be noted that the radial displacement
just above the CMB is related to the geoid change just below the
CMB plus the discontinuity of the isobaric surface displacement
(Chinnery 1975; Crossley & Gubbins 1975).

3 N O N - S E L F - G R AV I TAT I N G ,
I N C O M P R E S S I B L E F L AT E A RT H S

3.1 Transformation and implementation

As discussed earlier, the aim here is to transform eq. (3) into the
same form as eq. (1) for an incompressible flat earth.

Consider the equation of motion inside cells or elements where
material properties (including density and elasticity) are constant
(but may vary from one element to the next), then for incompressible
material, the third term in eq. (3) would vanish. Furthermore, if self-
gravitation were neglected, then the fourth term in eq. (3) vanishes
also. Therefore, the equation of motion becomes:

∇⃗ · τ − ρo g o ∇⃗w = 0, (6)

where w = u⃗ ·ẑ is the vertical component of the displacement vector.

C⃝ 2004 RAS, GJI, 158, 401–408
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Layer Layer top 
(radius, km)

Layer base 
(radius, km)

Thickness 
(km) Viscosity Density Young's 

Modulus
Poisson's 
Ratio

Gravitational 
Acceleration

Lithosphere 6371 6336 35 1x10^44 3196 1.8148E+11 0.4 9.7852
Lithosphere 6336 6301 35 1x10^44 3196 1.8148E+11 0.4 9.7852
Lithosphere 6301 6251 50 1x10^44 3196 1.8148E+11 0.4 9.7852
Upper Mantle 6251 6201 50 1x10^18 3439 2.1901E+11 0.4 9.8367
Upper Mantle 6201 6141 60 1x10^18 3439 2.1901E+11 0.4 9.8367
Upper Mantle 6141 5971 170 1x10^18 3439 2.1901E+11 0.4 9.8367
Upper Mantle 5971 5835 136 1x10^18 3882 3.2393E+11 0.4 9.9349
Upper Mantle 5835 5701 134 1x10^18 3882 3.2393E+11 0.4 9.9349
Lower Mantle 5701 5450 251 1x10^22 4527 5.3663E+11 0.4 9.9799
Lower Mantle 5450 4770 680 1x10^22 4527 5.3663E+11 0.4 9.9799
Lower Mantle 4770 4340 430 1x10^22 5074 7.2010E+11 0.4 9.9108
Lower Mantle 4340 3910 430 1x10^22 5074 7.2010E+11 0.4 9.9108
Lower Mantle 3910 3480 430 1x10^22 5074 7.2010E+11 0.4 9.9108

GIA benchmark model



• Total width 4000km 
(2000km each side of the 
ice load centre)

• Depth – surface to core 
(6371 – 3480km)

• Load: 
oDisc radius: 50km (dia

100km)
oDisc thickness: 100m
o Ice density: 917 kg/m3
oLoading 100 years, 

unloading 100 years

GIA benchmark model



Benchmark run: 100 km- diameter 
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• New computer architectures use SIMD 
(=vector) units to do fast computations

• If you (on an Intel chip) don’t utilize this, you 
a priori loose ¾ of your performance

• FEM: assembly = creating the matrix

solution = solving it

• Until recently, assembly procedures in Elmer 
did not utilize SIMD

• New Stokes solver does!

• It also recently go the block-preconditioner 
functionality to increase solution efficiency

Vectorized Stokes Solver

By Vadikus - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=3
9715273



Vectorized Stokes Solver



Vectorized Stokes Solver

• Solver works basically like legacy solver,  except for the 
assembly being SIMD parallel

• Switch off Div-curl discretization (else we have wrogn natural 
BC’s)

• You can (don’t have to) use the library version of the block-
preconditioner

• Else, just use the iteration method of your choice

• ISMIP-HOM-C (solved with cPardiso in both cases) was about 
1/3rd the solution time of a comparable legacy solver run
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Comparison vectorised/legacy Solver using  Intel VTune



Comparison vectorised/legacy Solver using  Intel VTune


