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Sea Level

Imagine a marine-terminated grounded glacier...
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Outline

1/ Damage Model

2/ Calving Criterion

3/ Conclusion

4/ Special Bonus
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Software Elmer/Ice, finite element model. 
Full-Stokes model.



Model Presentation

1/ Subcritical crack propagation (Weiss, 2004)

Damage Mechanics

2/ Fracture initiation (Van der Veen, 1998ab)

3/ Fracture arrest

Linear Elastic Fracture Mechanics

Calving Solver

Continuous Damage Mechanics Model
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Continuum Damage Mechanics (CDM) model : Local evolution of crevassing at the model grid scale, depending on 
the stress field and its transportation through a damage variable, which affects in turn the rheology of the ice.
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Continuum Damage Mechanics (CDM) model : Local evolution of crevassing at the model grid scale, depending on 
the stress field and its transportation through a damage variable, which affects in turn the rheology of the ice.

Limit of the damage criterion. Stresses are 
positive in traction

Isotropic damage variable D :
(
D = 0

D = 1

Undamaged ice

Fully damaged ice

E =
1

(1�D)n
µ = E.f(�) with

Change in viscosity :

Damage Variable is advected :
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Stress criterion for damage increase :
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1/ Subcritical crack propagation (Weiss, 2004)
2/ Fracture initiation (Van der Veen, 1998ab)
3/ Fracture arrest

Damage is free to evolve, slowly.

Ice keeps a viscous behaviour.

The viscosity and the ice flow are affected

Looking for a critical damage contour D= Dc.

D = Dc

Ice
Water

Glacier shape

Ice Flow

Damage Mechanics
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Representing a pre-existing crevasse depth d

d
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USF_Damage.f90

Model Presentation - Continuum Damage Mechanics

InitDamage EnhancementFactor

Put some damage in the 
ice following a gaussian 

distribution

Change the value of Glen 
Enhancement Factor

E =
1

(1�D)n

+

Boundary Conditions
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USF_Damage.f90

Model Presentation - Continuum Damage Mechanics

InitDamage EnhancementFactor

Compute the source term of the advection equation

SourceDamage

Compute Principal 
stresses

ComputeDevStress
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USF_Damage.f90InitDamage EnhancementFactor

Compute the source term of the advection equation

SourceDamage

Compute Principal 
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USF_Damage.f90InitDamage EnhancementFactor

Compute the source term of the advection equation

SourceDamage

Compute Principal 
stresses

ComputeDevStress

Compute the damage 
criterion
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Compute the source 
term
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Criterion name

B

!th

Healing factor
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1/ Subcritical crack propagation (Weiss, 2004)
2/ Fracture initiation (Van der Veen, 1998ab)
3/ Fracture arrest

The stress intensity factor KI is used to describe stress concentration near the tip of the crack.

K
I

=< S
xx

>
p
⇡d

crevasse depth

The fracture propagates if KI>KIc (ice toughness)

LEFM
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opening tensile stress minus closing 
compressive cryostatic pressure
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1/ Subcritical crack propagation (Weiss, 2004)
2/ Fracture initiation (Van der Veen, 1998ab)
3/ Fracture arrest

The stress intensity factor KI is used to describe stress concentration near the tip of the crack.

K
I

=< S
xx

>
p
⇡d

crevasse depth

LEFM

opening tensile stress minus closing 
compressive cryostatic pressure

If KI > KIa at the bed, calving event 
occurs along a vertical line.

Water

Ice 
Flow Ice
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The fracture propagates if KI>KIc (ice toughness)

KIa = arrest criterion

KIa = ↵.KIc
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D = Dc

Ice
Water

Glacier shape

Ice Flow

CalvingSolver.f90

Get Dc 
Contour
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CalvingSolver.f90

Get Dc 
Contour

Compute KI on 
the contour

K
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CalvingSolver.f90

Get Dc 
Contour

Compute KI on 
the contour

FlowdepthIntegrateVerticallyComputeDevStress
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CalvingSolver.f90

Get Dc 
Contour

Compute KI on 
the contour

FlowdepthIntegrateVerticallyComputeDevStress

Check if KI > 
KIc
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CalvingSolver.f90
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CalvingSolver.f90

Get Dc 
Contour

Compute KI on 
the contour

FlowdepthIntegrateVerticallyComputeDevStress
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CalvingSolver.f90

Get Dc 
Contour

Compute KI on 
the contour

FlowdepthIntegrateVerticallyComputeDevStress

Check if KI > 
KIc

Compute KI at 
the bed

Check if KI > 
KIa

Water

Ice 
Flow Ice

Calving at the 
first 

Xcoordinate

Xcalving

CalvingMask
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CalvingSolver.f90

Xcalving

CalvingMask

Dc

KIc

"

KIa = ↵.KIc

with
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How to prescribe terminus retreat?Initialization 

Model Presentation - Linear Elastic Fracture Mechanics
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Conclusion

Two distincts aspects :

- Damage Model -> USF_Damage.f90
- Calving Criterion -> CalvingSolver.f90

Prospectives / Limitations :

Damage Model :
- Extent the damage model for 3D/ Partitionned cases 
- Improve the complexity of damage criterion
- Application on real cases

Calving Solver (not the priority):
- 3D developpement  

Work in progress !

!
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Some results

14.

With a sinusoidal frontal melt rate...
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With a sinusoidal frontal melt rate...

Some results
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