

Continuum Damage Mechanics Model and Calving Law

Elmer/Ice Users Meeting

Tuesday, April 9th, 2013

J. Krug, G. Durand, J. Weiss, O. Gagliardini

Laboratoire de Glaciologie et Géophysique de l'environnement, Université Joseph Fourier

Contact: jean.krug@ujf-grenoble.fr

Imagine a marine-terminated grounded glacier...

Imagine a marine-terminated grounded glacier...

Imagine a marine-terminated grounded glacier...

Outline

1/ Damage Model

2/ Calving Criterion

3/ Conclusion

4/ Special Bonus

Software Elmer/Ice, finite element model. Full-Stokes model.

Model Presentation

Continuous Damage Mechanics Model

Damage Mechanics

1/ Subcritical crack propagation (Weiss, 2004)

Calving Solver

Linear Elastic Fracture Mechanics

2/ Fracture initiation (Van der Veen, 1998ab)

3/ Fracture arrest

Continuum Damage Mechanics (CDM) model: Local evolution of crevassing at the model grid scale, depending on the stress field and its transportation through a damage variable, which affects in turn the rheology of the ice.

Continuum Damage Mechanics (CDM) model: Local evolution of crevassing at the model grid scale, depending on the stress field and its transportation through a damage variable, which affects in turn the rheology of the ice.

Isotropic damage variable **D**:

$$D=0$$
 Undamaged ice $D=1$ Fully damaged ice

Continuum Damage Mechanics (CDM) model: Local evolution of crevassing at the model grid scale, depending on the stress field and its transportation through a damage variable, which affects in turn the rheology of the ice.

undamaged area

damaged area

Isotropic damage variable **D**:

$$\left\{ egin{array}{ll} D=0 & \mbox{ Undamaged ice} \ D=1 & \mbox{ Fully damaged ice} \end{array}
ight.$$

Change in viscosity:

$$\mu = E.f(\sigma) \quad \text{with} \quad E = \frac{1}{(1-D)^n}$$

Continuum Damage Mechanics (CDM) model: Local evolution of crevassing at the model grid scale, depending on the stress field and its transportation through a damage variable, which affects in turn the rheology of the ice.

undamaged area

damaged area

Isotropic damage variable **D**:

$$D=0$$
 Undamaged ice $D=1$ Fully damaged ice

damaged material

Change in viscosity:

$$\mu = E.f(\sigma) \quad \text{with} \quad E = \frac{1}{(1-D)^n}$$

Damage Variable is advected:

$$\frac{\partial D}{\partial t} + \vec{u}\nabla D = f(\chi)$$

Continuum Damage Mechanics (CDM) model: Local evolution of crevassing at the model grid scale, depending on the stress field and its transportation through a damage variable, which affects in turn the rheology of the ice.

undamaged area

damaged area

Isotropic damage variable **D**:

$$\begin{cases} D=0 & \text{Undamaged ice} \\ D=1 & \text{Fully damaged ice} \end{cases}$$

damaged material

Change in viscosity:

$$\mu = E.f(\sigma)$$
 with $E = \frac{1}{(1-D)^n}$

Damage Variable is advected:

$$\frac{\partial D}{\partial t} + \vec{u}\nabla D = f(\chi)$$

Stress criterion for damage increase :

$$\chi(\tilde{\sigma}) = \frac{\sigma_I}{(1-D)} - \sigma_{th}$$

Damage Mechanics

1/ Subcritical crack propagation (Weiss, 2004)

- 2/ Fracture initiation (Van der Veen, 1998ab)
- 3/ Fracture arrest

Damage is free to evolve, slowly.

Ice keeps a viscous behaviour.

The viscosity and the ice flow are affected

Looking for a critical damage contour D= Dc.

Representing a pre-existing crevasse depth *d*

USF_Damage.f90

EnhancementFactor

Put some damage in the ice following a gaussian distribution

Change the value of Glen Enhancement Factor

$$E = \frac{1}{(1-D)^n}$$

Boundary Conditions

+

Compute the source term of the advection equation

Compute Principal stresses

Compute the source term of the advection equation

Body Force 1
Flow BodyForce 1 = Real 0.0
Flow BodyForce 2 = Real \$gravity
DGD Source = Variable Damage
Real Procedure "./USF_Damage" "SourceDamage"
End
$$\frac{\partial D}{\partial t} + \vec{u} \nabla D = f(\chi)$$

Compute the source term of the advection equation

- 1/ Subcritical crack propagation (Weiss, 2004)
- 2/ Fracture initiation (Van der Veen, 1998ab)
- 3/ Fracture arrest

The stress intensity factor K_l is used to describe stress concentration near the tip of the crack.

The fracture propagates if $K_l > K_{lc}$ (ice toughness)

- 1/ Subcritical crack propagation (Weiss, 2004)
- 2/ Fracture initiation (Van der Veen, 1998ab)
- 3/ Fracture arrest

The stress intensity factor K_l is used to describe stress concentration near the tip of the crack.

opening tensile stress minus closing compressive cryostatic pressure

The fracture propagates if $K_l > K_{lc}$ (ice toughness)

 K_{la} = arrest criterion

$$K_{I_a} = \alpha . K_{I_c}$$

If $K_I > K_{Ia}$ at the bed, calving event occurs along a vertical line.

CalvingSolver.f90

Get Dc Contour

CalvingSolver.f90

$$K_I = < S_{xx} > \sqrt{\pi d}$$

CalvingSolver.f90

Initialization

How to prescribe terminus retreat?

```
Initial Condition 2

I sets the initial position of the free surface variable

Xf = Equals Coordinate 1

I reference to this initial condition

ReferenceXf = Equals Coordinate 1

Xcalving = Equals Coordinate 1

CalvingMask = Real -1.0

End
```

```
Roundary Condition 4

Target Boundaries = 2

Body Id = 2

Xf = Equals Xcalving

Xf Condition = Equals CalvingMask

Mesh Update 1 = Variable Xf, ReferenceXf

Real MATC "tx(0) - tx(1)"

Flux integrate = Logical True
```

Conclusion

Two distincts aspects:

- Damage Model -> USF_Damage.f90
- Calving Criterion -> CalvingSolver.f90

Prospectives / Limitations :

Damage Model:

- Extent the damage model for 3D/ Partitionned cases
- Improve the complexity of damage criterion
- Application on real cases

Calving Solver (not the priority):

- 3D developpement

Some results

With a sinusoidal frontal melt rate...

Some results

With a sinusoidal frontal melt rate...

Some results

Thank you!

References

Van der Veen, C.J. « Fracture mechanics approach to penetration of bottom crevasses on glaciers ». Cold Regions Science and Technology 27, n° 3 (june 1998): 213–223. doi:10.1016/S0165-232X(98)00006-8.

Van der Veen, C.J. « Fracture mechanics approach to penetration of surface crevasses on glaciers ». Cold Regions Science and Technology 27, nº 1 (february 1998): 31–47. doi:10.1016/S0165-232X(97)00022-0.

Weiss, Jérôme. « Subcritical crack propagation as a mechanism of crevasse formation and iceberg calving ». Journal of Glaciology 50, nº 168 (2004): 109–115. doi:10.3189/172756504781830240.