

Internal extrusion and working with structured meshes

Peter Råback

ElmerTeam
CSC – IT Center for Science

Elmer/Ice advanced course CSC, 4-6.11.2013

Outline

- About structured meshes in Elmer
- Extrusion of meshes
- Utilizing extruded structures

Structured meshes for computational glaciology

- Generally Elmer treats all meshes in Elmer as unstructured
- In computational glaciology the footprint is always of irregular shape
- For optimal accuracy it makes sense that the number of elements in depth direction does not vary
 - Solution: 2D meshes + extrusion
- Extrusion strategies written mainly for computational glaciology but may also have other used

Creating extruded meshes

- ElmerGrid
 - 2D Elmer mesh format -> extruded mesh
- Stand-alone program
 - Written by Thomas
- Internal extrusion
 - Performed on the parallel level
 - Minimizes disk I/O
 - Removes memory bottle-necks

Bottle-necks in pre-processing

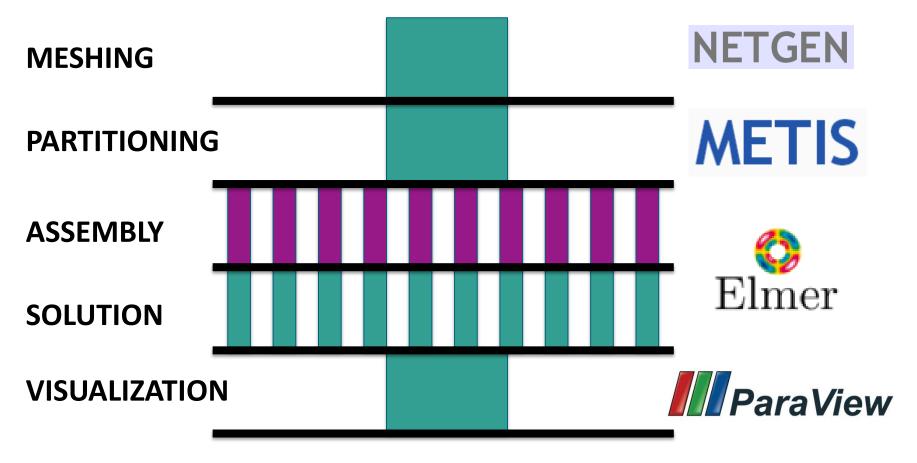
- After the solution pre-processing is typically the 2nd most time- and memory intensive task
- Mesh partitioning is typically less laborious than mesh generation
 - In Elmer we haven't utilized parallel graph partitioning libraries (e.g. ParMetis)
- Serial mesh generation limited to around ~10 M elements

Finalizing the mesh in parallel level

- First make a coarse mesh and partition it
- Bisection of existing elements in each direction
 - 2^DIM^n -fold problem-size
 - Known as "Mesh Multiplication"
 - Simple inheritance of mesh grading
- Increase of element order (p-elements)
 - p-hierarchy enables the use of p-multigrid
- Extrusion of 2D layer into 3D for special cases
 - Example: Greenland Ice-sheet

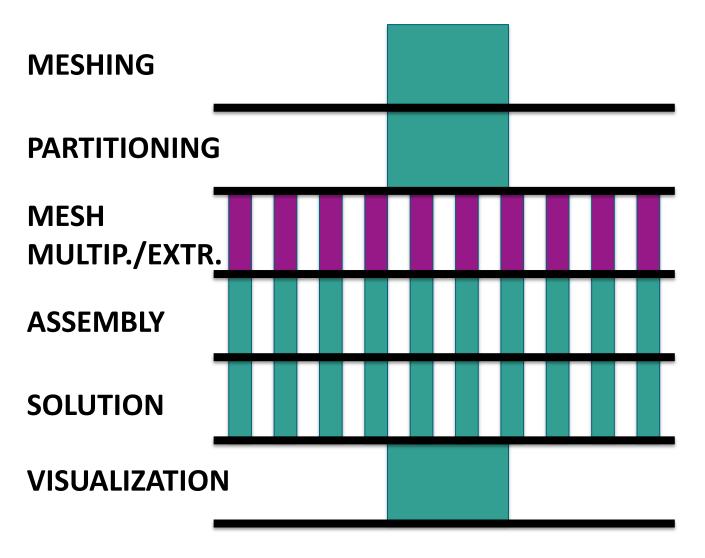
Standard parallel workflow

- Both assembly and solution is done in parallel using MPI
- Assembly is trivially parallel
- This is the basic parallel workflow used for Elmer



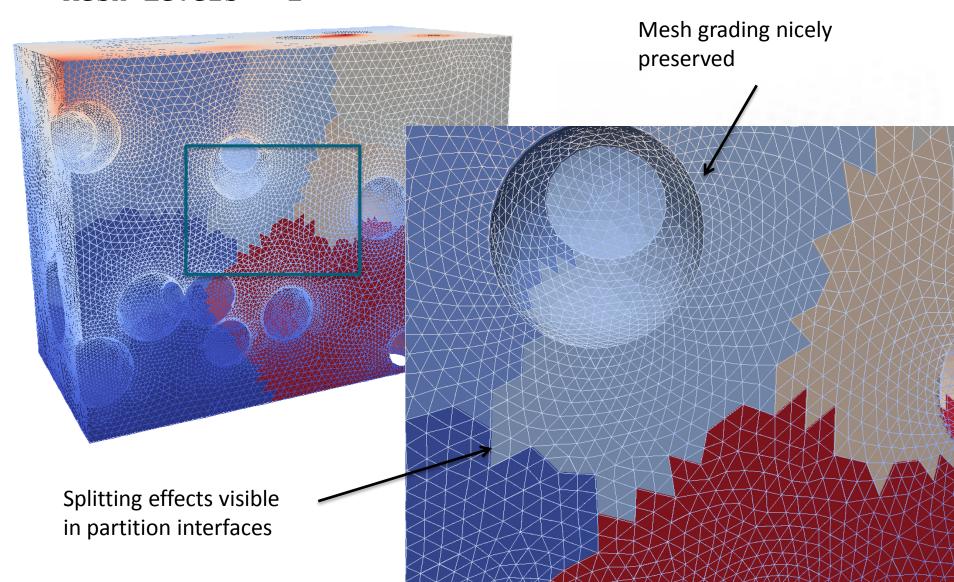
Parallel workflow

Large meshes may be finilized at the parallel level



Mesh multiplication, example

Mesh Levels = 2



Mesh Multiplication, example

- Implemented in Elmer as internal strategy ~2005
- Mesh multiplication was applied to two meshes
 - Mesh A: structured, 62500 hexahedrons
 - Mesh B: unstructured, 65689 tetrahedrons
- The CPU time used is negligible

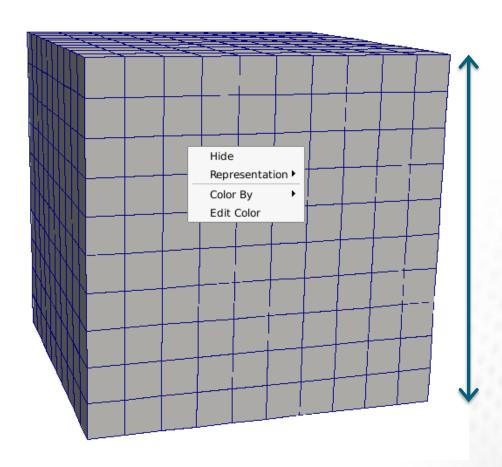
Mesh	#splits	#elems	#procs	T_center (s)	T_graded (s)
Α	2	4 M	12	0.469	0.769
	2	4 M	128	0.039	0.069
	3	32 M	128	0.310	0.549
В	2	4.20 M	12	0.369	
	2	4.20 M	128	0.019	
	3	33.63 M	128	0.201	

Limitations of mesh multiplication

- Standard mesh multiplication does not increase geometric accuracy
 - Polygons retain their shape
 - Mesh multiplication could be made to honor boundary shapes (done in Alya by BSC, Spain)
- Optimal mesh grading difficult to achieve
 - The coarsest mesh level does not usually have sufficient information to implement fine level grading

Extrusion of partitioned meshes

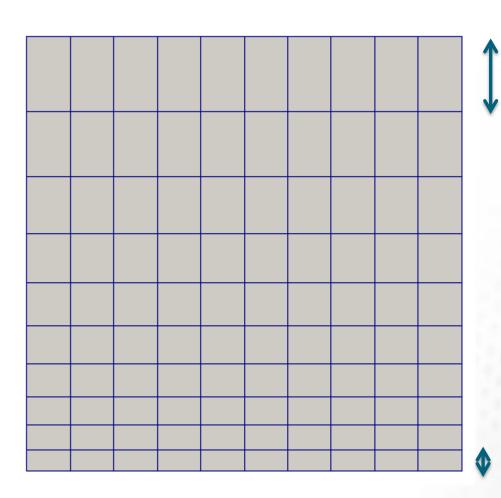
- Implemented as an internal strategy in Elmer (2013)
 - Juha, Peter & Rupert
- First partition a 2D mesh, then extrude into 3D
- Implemented also for partitioned meshes
 - Extruded lines belong to the same partition by construction!
- Deterministic, i.e. element and node numbering determined by the 2D mesh
 - Complexity: O(N)
- There are many problems of practical problems where the mesh extrusion of a initial 2D mesh provides a good solution
 - One such field is glasiology where glaciers are thin, yet the 2D approach is not always sufficient in accurary



Extruded Mesh Levels = 11

The number of levels is a bit unintuitive as it refers to node layers.

By default z in [0,1]



Extruded Mesh Levels = 11 Extruded Mesh Ratio = 4.0

UnitSegmentDivision: Mesh division ready

UnitSegmentDivision: w(0): 0.0000E+00

UnitSegmentDivision: w(1): 4.9566E-02

UnitSegmentDivision: w(2): 1.0650E-01

UnitSegmentDivision: w(3): 1.7191E-01

UnitSegmentDivision: w(4): 2.4703E-01

UnitSegmentDivision: w(5): 3.3333E-01

UnitSegmentDivision: w(6): 4.3247E-01

UnitSegmentDivision: w(7): 5.4634E-01

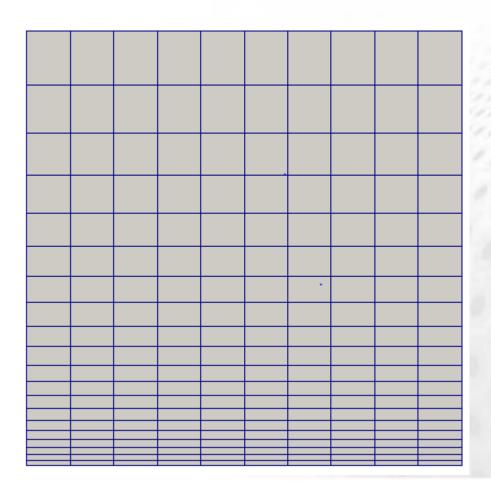
UnitSegmentDivision: w(8): 6.7714E-01

UnitSegmentDivision: w(9): 8.2740E-01

UnitSegmentDivision: w(10): 1.0000E+00

Just a dummy, refers to z in [0,1] csc

Extruded Mesh Levels = 21
Extruded Mesh Density = Variable Coordinate 1
Real MATC "1+10*tx"



Just a dummy, refers to z in [0,1] csc

Extruded Mesh Levels = 21

Extruded Mesh Density = Variable Coordinate 1

Real

0.0 1.0

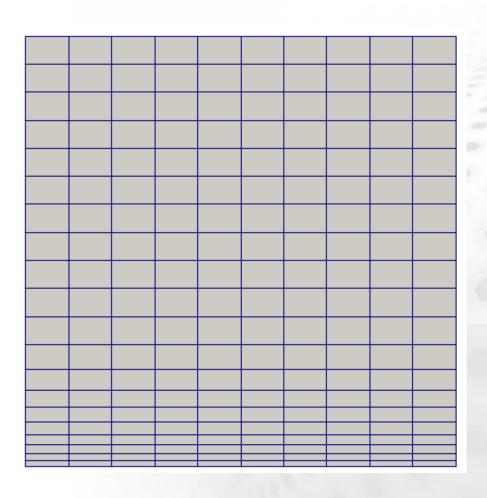
0.3 5.0

1.0 5.0

End

Density characterized by a mesh parameter *h*

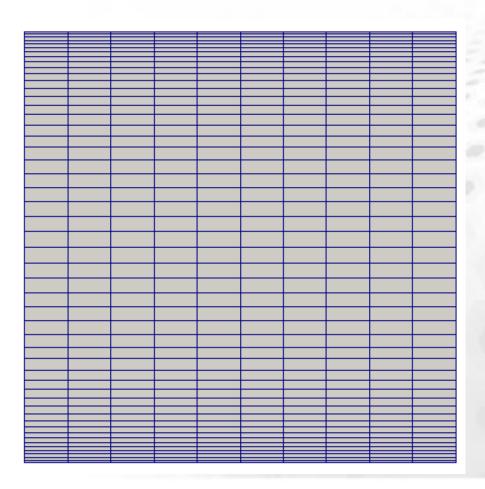
Always the requested number of layers generated!



Extruded Mesh Levels = 11
Extruded Mesh Density = Variable Coordinate 1
Real MATC "0.2+sin(pi*tx)"

Any functional dependence is ok as long as it is positive!

The optimal division is found iteratively using Gauss-Seidel type of iteration and large variations make the iterations converge slowly.



MeshExtrude subroutine in MeshUtils.src


```
!> Given a 2D mesh extrude it to be 3D. The 3rd coordinate will always
!> be at the interval [0,1]. Therefore the adaptation for different shapes
!> must be done with StructuredMeshMapper, or some similar utility.
!> The top and bottom surface will be assigned Boundary Condition tags
!> with indexes one larger than the maximum used on by the 2D mesh.
FUNCTION MeshExtrude(Mesh in, in levels) RESULT(Mesh out)
 TYPE(Mesh_t), POINTER :: Mesh_in, Mesh_out
 INTEGER :: in_levels
      _____
```

UnitSegmentDivision in MeshUtils.src


```
!> Create node distribution for a unit segment x \in [0,1] with n elements
!> i.e. n+1 nodes. There are different options for the type of distribution.
!> 1) Even distribution
!> 2) Geometric distribution
!> 3) Arbitrary distribution determined by a functional dependence
!> Note that the 3rd algorithm involves iterative solution of the nodal
!> positions and is therefore not bullet-proof.
SUBROUTINE UnitSegmentDivision(w, n)
  REAL(KIND=dp), ALLOCATABLE :: w(:)
  INTEGER :: n
     _____
```



```
! Compute the point in the local mesh xn \in [0,1]
! and get the mesh parameter for that element from
! external function.
DO i=1,n
 xn = (w(i)+w(i-1))/2.0_dp
 h(i) = ListGetFun( CurrentModel %
    Simulation, Extruded Mesh Density', xn)
END DO
! Utilize symmetric Gauss-Seidel to compute the new
! positions, w(i) from a weighted mean of the desired
! elemental densities, h(i).
DO i=1,n-1
 w(i) = (w(i-1)*h(i+1)+w(i+1)*h(i))/(h(i)+h(i+1))
END DO
DO i=n-1,1,-1
 w(i) = (w(i-1)*h(i+1)+w(i+1)*h(i))/(h(i)+h(i+1))
```

END DO

 $dw \propto h$

Other keywords:

Extruded Coordinate Index = Integer ! 1,2,3
What coordinate to extrude

Extruded Min Coordinate = Real
Extruded Max Coordinate = Real
Override the default interval [0,1]

Preserve Baseline = Logical
Preserve the 1D boundary of the baseline

Internal extrusion – numering of BCs

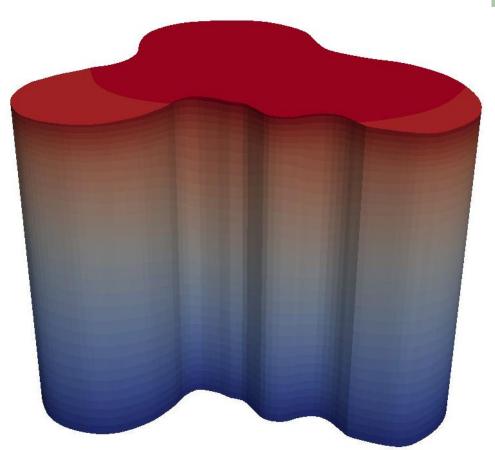
- Side boundaries get a BC constraint so that
 - 2D constraint BC = 1D contraint BC + offset
 - offset is set if the baseline BCs are preserved
- Top and bottom boundaries get the next free BC constraint indexes

- Note that the BCs refer directly to the "Boundary Condition"
 - "Target Boundaries" is used only when reading in the mesh in the 1st place and they are not available any more at this stage

Internals extrusion – real shapes

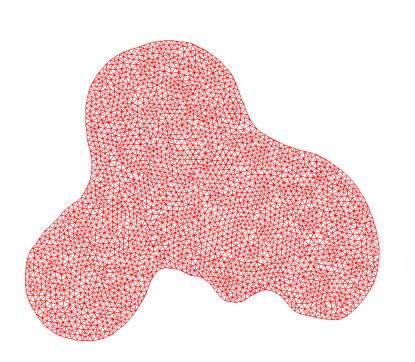
- The mesh division is only set along the 1D extruded line
- For true geometries some additional strategy is needed to map the mesh between the real top and bottom surfaces
 - StructuredMeshMapper
 - MeshUpdate solver

Internal extrusion: Example, AaltoVase



Design Alvar Aalto, 1936

Internal extrusion: Example, extrude.sif



2D mesh by Gmsh

3D internally extruded mesh

Play around with different options to see how your vase is meshed.

Utilizing extruded structures

- If the mesh is extruded it makes sense to utilize this fact also in later steps
 - Operators in the extruded directions
 - Combination of full 3D and 2D higher order models
- Tailored solvers that assume extruded structure
 - StructuredMeshMapper
 - StructuredProjectToPlane
 - StructuredFlowLine
- No assumptions on the numbering of the nodes is needed

DetectExtrudedStructure in MeshUtils.src

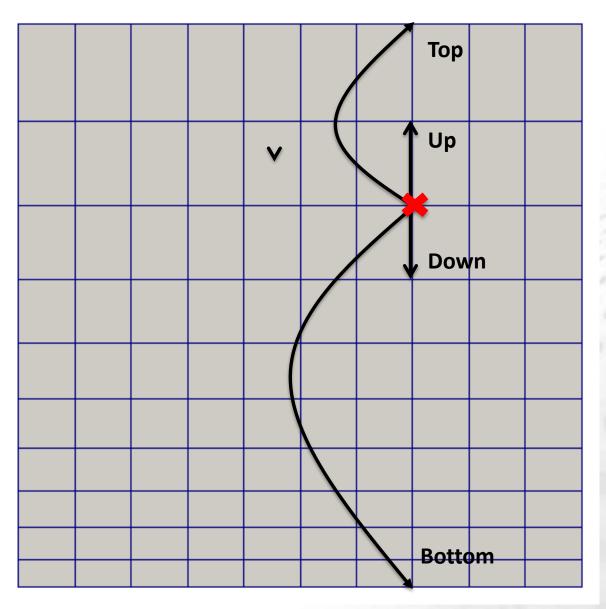
- !> This subroutine finds the structure of an extruded mesh even though it is
- !> given in an unstructured format. The routine may be used by some special
- !> solvers that employ the special character of the mesh.
- !> The extrusion is found for a given direction and for each node the corresponding
- !> up and down, and thereafter top and bottom node is computed.

SUBROUTINE DetectExtrudedStructure(Mesh, Solver, ExtVar, & TopNodePointer, BotNodePointer, & UpNodePointer, DownNodePointer, & NumberOfLayers, NodeLayer)

DetectExtrudedStructure

- Go through each element
 - If in the element vector spanned by two nodes (i,j) is directed as extruded direction set
 UpNodePointer(i)=j or DownNodePointer(i)=j
 - Complexity O(N)
- Go through each element until no change
 - TopNodePointer(i)=UpNodePointer(TopNodePointer(i)) BotNodePoiner(i)=DownNodePointer(BotNodePointer(i))
 - Complexity O(N*N_z)
- As a result we have for each node pointers to up and down, and top and bottom nodes at the extruded line.

DetectExtrudedStructrure – Up, Down, Top, Bottom



CSC

StructuredMeshMapper

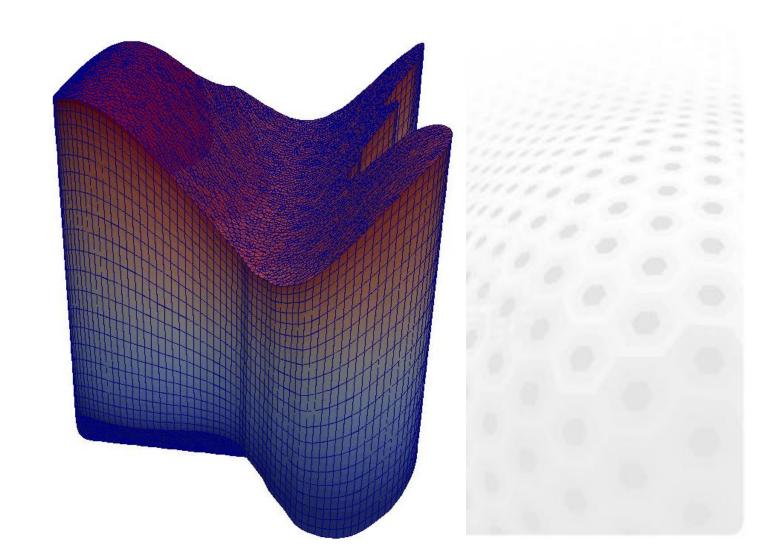
- Takes a mesh with an extruded structure
- Maps the mesh between its bottom and top surfaces
 - Original relative element division is maintained
- Various ways to define the displacement at the top and bottom
 - Constant
 - Given field
 - Variable for GetReal in boundary condition
- For documentation and explanation of keywords see Ch.
 61 in Elmer Models Manual

StucturedMeshMapper vs. MeshSolve

- Pros
 - Much faster: complexity O(N)
 - No convergence issues
 - Retains the extruded form of the mesh
- Cons
 - Applicable only to extruded meshes
 - Currently does not compute mesh velocity
 - Is this needed?

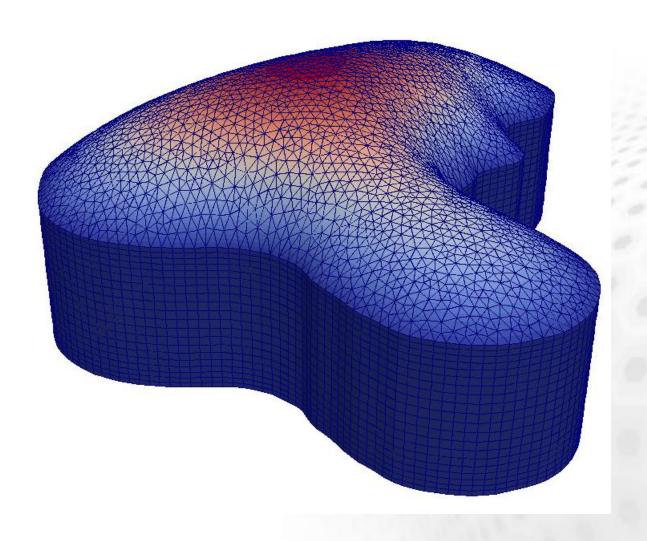
StructuredMeshMapper: Example map.sif

Mesh mapped using analytical functions



StructuredMeshMapper: Example map_temp.sif

Mesh mapped using a given temperature field



StructuredProjectToPlane

- Takes a mesh with an extruded structure
- Maps data to top or bottom surface, but also to whole mesh depending on the operator
 - Complexity O(N) or O(N*N_z)
- Works in parallel if each extruded line is in the same partition
 - No communication
- For documentation and explanation of keywords see Ch.
 60 in Elmer Models Manual
 - Documentation is not complete!

StructuredProjectToPlane - Operators on geometry

CSC

Options for "Operator i = String"

- height Calculate height from bottom
- depth Calculate depth from top
- index index of layer starting from top
- thickness Calculate the thickness of the mesh
- distance Calculate the minimum distance to surface

StructuredProjectToPlane - Operators on variables

Options for "Operator i = String"

- sum take the sum on all nodes on the extruded line
- int take the integral over the extruded line
- min take the minimum value
- max take the maximum value
- Isosurface take the value on the isosurface
 - Additional required keywords:
 Isosurface Variable i = String
 Isosurface Value i = Real

StructuredProjectToPlane – Operators on vars...

Options for "Operator i = String"

- layer below top Value at the given layer
- layer above surface Value at the given layer
 - Additional required keyword: Layer Index i = Integer

StructureProjectToPlane – operator 'int' (simplified)

- After the structured mesh is found line integrals become really simple
- Limitation: Higher order elements not used optimally

```
CASE ('int')

TopField = 0.0_dp

DO i=1,nsize

itop = TopPointer(i)

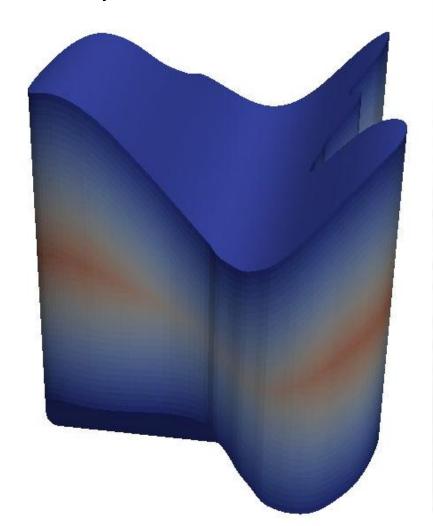
dx = 0.5*(Coord(UpPointer(i)) - Coord(DownPointer(i)))

TopField(TopPerm(itop)) = TopField(TopPerm(itop)) + dx * FieldIn(i)

END DO
```

StructuredProjectToPlane: Example project.sif

Total of 12 different mapping operations on geometry and temperature



Operator 1 = depth
Operator 2 = height
Operator 3 = thickness
Operator 4 = distance
Operator 5 = index

Geometric operators

Variable 6 = Temperature

Operator 6 = min

Operator 7 = max

Operator 8 = sum

Operator 9 = int

Operator 10 = isosurface Isosurface Variable 10 = String Coordinate 3 Isosurface Value 10 = Real 0.5

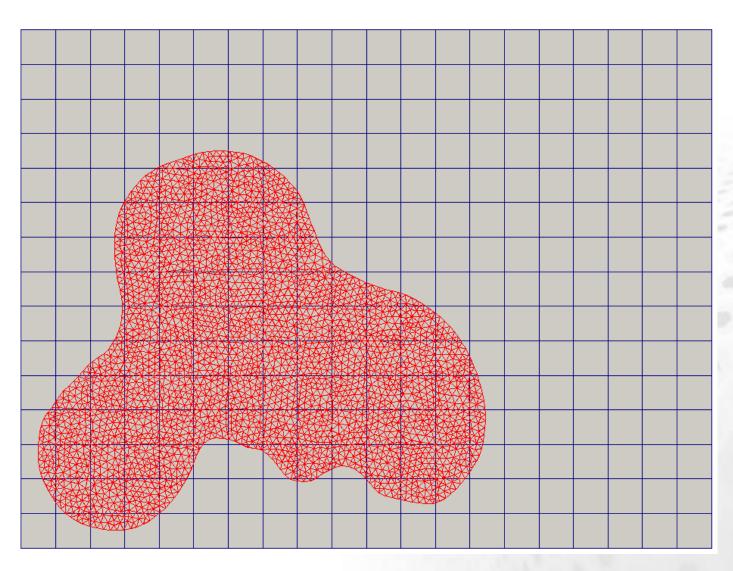
Operator 11 = Layer Below Top Layer Index 11 = Integer 3

Operator 12 = Layer Above Bottom Layer Index 12 = Integer 3

GridDataReader - Getting the real data in

- Typically elevations, temperature forcing etc. data is available in a uniform (x,y) mesh in NetCDF files
 - You may utilize GridDataReader to read this data
- For documentation and explanation of keywords see Ch.
 57 in Elmer Models Manual
- Most important features
 - Reading multiple fields
 - Scaling, constant offsets, linear combination of fields
 - Steady state & transient operation
 - Linear interpolation for time and space
 - Applicable to 2D and 3D cases

GridDataReader – Problem illustration



GridDataReader

- Define the grid parameters of the NetCDF file
 - $-h_{x'}h_{y'}x_{0'}y_{0'}...$
- \circ Go through each node (x,y) in the FE mesh
 - For each node the correct cell is found easily $i=floor((x-x_0)/h_x)$ and $j=floor((y-y_0)/h_y)$
 - Field value then interpolated using bilinear interpolation $f(x,y)=pq\ f(i,j)+p(1-q)\ f(i,j+1)+$ $(1-p)q\ f(i+1,j)+(1-p)(1-q)\ f(i+1,j+1)$
- Complexity O(N) & small memory consumption
 - only one cell read at a time
- If grid is not uniform finding of the correct cell is not as easy
 - Hack by Rupert, uses more memory & CPU-time

Summary

- If you can utilize extruded meshes do so
- Internal mesh extrusion
 - Removes efficiently many meshing bottle-necks
- Most importat solvers utilizing extruded structures
 - StructuredMeshMapper
 - StructuredProjectToPlane
- Mesh mapping typically requires data
 - GridDataReader for NetCDF input
 - Internally solved field
- Complexity of all operations is almost O(N)
 - Optimal scalability for larger problems