

Internal extrusion

and
working with structured meshes

Peter Råback
ElmerTeam

CSC – IT Center for Science

Elmer/Ice advanced course

CSC, 4-6.11.2013

Outline

About structured meshes in Elmer

Extrusion of meshes

Utilizing extruded structures

Structured meshes for computational glaciology

Generally Elmer treats all meshes in Elmer as
unstructured

In computational glaciology the footprint is always of
irregular shape

For optimal accuracy it makes sense that the number of
elements in depth direction does not vary

– Solution: 2D meshes + extrusion

Extrusion strategies written mainly for computational
glaciology but may also have other used

Creating extruded meshes

ElmerGrid

– 2D Elmer mesh format -> extruded mesh

Stand-alone program

– Written by Thomas

Internal extrusion

– Performed on the parallel level

– Minimizes disk I/O

– Removes memory bottle-necks

Bottle-necks in pre-processing

After the solution pre-processing is typically the 2nd
most time- and memory intensive task

Mesh partitioning is typically less laborious than mesh
generation

– In Elmer we haven’t utilized parallel graph partitioning
libraries (e.g. ParMetis)

Serial mesh generation limited to around ~10 M
elements

Finalizing the mesh in parallel level

First make a coarse mesh and partition it

Bisection of existing elements in each
direction

– 2^DIM^n -fold problem-size

– Known as ”Mesh Multiplication”

– Simple inheritance of mesh grading

Increase of element order (p-elements)

– p-hierarchy enables the use of p-multigrid

Extrusion of 2D layer into 3D for special
cases

– Example: Greenland Ice-sheet

Standard parallel workflow

Both assembly and solution is done in parallel using MPI

Assembly is trivially parallel

This is the basic parallel workflow used for Elmer

SOLUTION

VISUALIZATION

ASSEMBLY

PARTITIONING

MESHING

Parallel workflow

Large meshes may be finilized at the parallel level

SOLUTION

VISUALIZATION

ASSEMBLY

PARTITIONING

MESHING

MESH
MULTIP./EXTR.

Mesh multiplication, example

Splitting effects visible
in partition interfaces

Mesh grading nicely
preserved

Mesh Levels = 2

Mesh Multiplication, example

Implemented in Elmer as internal strategy ~2005

Mesh multiplication was applied to two meshes
– Mesh A: structured, 62500 hexahedrons

– Mesh B: unstructured, 65689 tetrahedrons

The CPU time used is negligible

Mesh #splits #elems #procs T_center
(s)

T_graded
(s)

A 2 4 M 12 0.469 0.769

2 4 M 128 0.039 0.069

3 32 M 128 0.310 0.549

B 2 4.20 M 12 0.369

2 4.20 M 128 0.019

3 33.63 M 128 0.201

Limitations of mesh multiplication

Standard mesh multiplication does not increase
geometric accuracy

– Polygons retain their shape

– Mesh multiplication could be made to honor boundary
shapes (done in Alya by BSC, Spain)

Optimal mesh grading difficult to achieve

– The coarsest mesh level does not usually have sufficient
information to implement fine level grading

Extrusion of partitioned meshes

Implemented as an internal strategy in Elmer (2013)

– Juha, Peter & Rupert

First partition a 2D mesh, then extrude into 3D

Implemented also for partitioned meshes

– Extruded lines belong to the same partition by construction!

Deterministic, i.e. element and node numbering determined
by the 2D mesh

– Complexity: O(N)

There are many problems of practical problems where the
mesh extrusion of a initial 2D mesh provides a good solution
– One such field is glasiology where glaciers are thin, yet the 2D

approach is not always sufficient in accurary

Internal extrusion

Extruded Mesh Levels = 11

By default z in [0,1]

The number of levels is a bit
unintuitive as it refers to node layers.

Internal extrusion

Extruded Mesh Levels = 11

Extruded Mesh Ratio = 4.0

UnitSegmentDivision: Mesh division ready
UnitSegmentDivision: w(0) : 0.0000E+00
UnitSegmentDivision: w(1) : 4.9566E-02
UnitSegmentDivision: w(2) : 1.0650E-01
UnitSegmentDivision: w(3) : 1.7191E-01
UnitSegmentDivision: w(4) : 2.4703E-01
UnitSegmentDivision: w(5) : 3.3333E-01
UnitSegmentDivision: w(6) : 4.3247E-01
UnitSegmentDivision: w(7) : 5.4634E-01
UnitSegmentDivision: w(8) : 6.7714E-01
UnitSegmentDivision: w(9) : 8.2740E-01
UnitSegmentDivision: w(10) : 1.0000E+00

Internal extrusion

Extruded Mesh Levels = 21

Extruded Mesh Density = Variable Coordinate 1

 Real MATC "1+10*tx"

Just a dummy, refers to z in [0,1]

Internal extrusion

Extruded Mesh Levels = 21

Extruded Mesh Density = Variable Coordinate 1

 Real

 0.0 1.0

 0.3 5.0

 1.0 5.0

 End

Just a dummy, refers to z in [0,1]

Density characterized by a
mesh parameter h

Always the requested number
of layers generated!

Internal extrusion

Extruded Mesh Levels = 11

Extruded Mesh Density = Variable Coordinate 1

 Real MATC "0.2+sin(pi*tx)"

Any functional dependence
is ok as long as it is positive!

The optimal division is found
iteratively using Gauss-
Seidel type of iteration and
large variations make the
iterations converge slowly.

!--
!> Given a 2D mesh extrude it to be 3D. The 3rd coordinate will always
!> be at the interval [0,1]. Therefore the adaptation for different shapes
!> must be done with StructuredMeshMapper, or some similar utility.
!> The top and bottom surface will be assigned Boundary Condition tags
!> with indexes one larger than the maximum used on by the 2D mesh.
!--
 FUNCTION MeshExtrude(Mesh_in, in_levels) RESULT(Mesh_out)
!--
 TYPE(Mesh_t), POINTER :: Mesh_in, Mesh_out
 INTEGER :: in_levels
!--
 …..

MeshExtrude subroutine in MeshUtils.src

UnitSegmentDivision in MeshUtils.src

!--
!> Create node distribution for a unit segment x \in [0,1] with n elements
!> i.e. n+1 nodes. There are different options for the type of distribution.
!> 1) Even distribution
!> 2) Geometric distribution
!> 3) Arbitrary distribution determined by a functional dependence
!> Note that the 3rd algorithm involves iterative solution of the nodal
!> positions and is therefore not bullet-proof.
!--
 SUBROUTINE UnitSegmentDivision(w, n)
 REAL(KIND=dp), ALLOCATABLE :: w(:)
 INTEGER :: n
 !---

! Compute the point in the local mesh xn \in [0,1]
! and get the mesh parameter for that element from
! external function.
!---
DO i=1,n
 xn = (w(i)+w(i-1))/2.0_dp
 h(i) = ListGetFun(CurrentModel %
 Simulation,'Extruded Mesh Density', xn)
END DO

! Utilize symmetric Gauss-Seidel to compute the new
! positions, w(i) from a weighted mean of the desired
! elemental densities, h(i).
!--
DO i=1,n-1
 w(i) = (w(i-1)*h(i+1)+w(i+1)*h(i))/(h(i)+h(i+1))
END DO
DO i=n-1,1,-1
 w(i) = (w(i-1)*h(i+1)+w(i+1)*h(i))/(h(i)+h(i+1))
END DO

dw  h

Internal extrusion

Other keywords:

Extruded Coordinate Index = Integer ! 1,2,3

What coordinate to extrude

Extruded Min Coordinate = Real

Extruded Max Coordinate = Real

Override the default interval [0,1]

Preserve Baseline = Logical

Preserve the 1D boundary of the baseline

Internal extrusion – numering of BCs

Side boundaries get a BC constraint so that

– 2D constraint BC = 1D contraint BC + offset

– offset is set if the baseline BCs are preserved

Top and bottom boundaries get the next free BC
constraint indexes

Note thet the BCs refer directly to the ”Boundary
Condition”

– ”Target Boundaries” is used only when reading in the mesh
in the 1st place and they are not available any more at this
stage

Internals extrusion – real shapes

The mesh division is only set along the 1D extruded line

For true geometries some additional strategy is needed
to map the mesh between the real top and bottom
surfaces

– StructuredMeshMapper

– MeshUpdate solver

Internal extrusion: Example, AaltoVase

Design Alvar Aalto, 1936

Internal extrusion: Example, extrude.sif

Play around with different options to see how your
vase is meshed.

2D mesh by Gmsh
3D internally extruded mesh

Utilizing extruded structures

If the mesh is extruded it makes sense to utilize this fact
also in later steps

– Operators in the extruded directions

– Combination of full 3D and 2D higher order models

Tailored solvers that assume extruded structure

– StructuredMeshMapper

– StructuredProjectToPlane

– StructuredFlowLine

No assumptions on the numbering of the nodes is
needed

DetectExtrudedStructure in MeshUtils.src

!--
!> This subroutine finds the structure of an extruded mesh even though it is
!> given in an unstructured format. The routine may be used by some special
!> solvers that employ the special character of the mesh.
!> The extrusion is found for a given direction and for each node the corresponding
!> up and down, and thereafter top and bottom node is computed.
!---

 SUBROUTINE DetectExtrudedStructure(Mesh, Solver, ExtVar, &
 TopNodePointer, BotNodePointer, &
 UpNodePointer, DownNodePointer, &
 NumberOfLayers, NodeLayer)

DetectExtrudedStructure

Go through each element

– If in the element vector spanned by two nodes (i,j) is
directed as extruded direction set
UpNodePointer(i)=j or DownNodePointer(i)=j

– Complexity O(N)

Go through each element until no change

– TopNodePointer(i)=UpNodePointer(TopNodePointer(i))
BotNodePoiner(i)=DownNodePointer(BotNodePointer(i))

– Complexity O(N*N_z)

As a result we have for each node pointers to up and
down, and top and bottom nodes at the extruded line.

DetectExtrudedStructrure – Up, Down, Top, Bottom

Up

Down

Bottom

Top

StructuredMeshMapper

Takes a mesh with an extruded structure

Maps the mesh between its bottom and top surfaces

– Original relative element division is maintained

Various ways to define the displacement at the top and
bottom

– Constant

– Given field

– Variable for GetReal in boundary condition

For documentation and explanation of keywords see Ch.
61 in Elmer Models Manual

StucturedMeshMapper vs. MeshSolve

Pros

– Much faster: complexity O(N)

– No convergence issues

– Retains the extruded form of the mesh

Cons

– Applicable only to extruded meshes

– Currently does not compute mesh velocity

Is this needed?

StructuredMeshMapper: Example map.sif

Mesh mapped using analytical functions

StructuredMeshMapper: Example map_temp.sif

Mesh mapped using a given temperature field

StructuredProjectToPlane

Takes a mesh with an extruded structure

Maps data to top or bottom surface, but also to whole
mesh depending on the operator

– Complexity O(N) or O(N*N_z)

Works in parallel if each extruded line is in the same
partition

– No communication

For documentation and explanation of keywords see Ch.
60 in Elmer Models Manual

– Documentation is not complete!

StructuredProjectToPlane – Operators on geometry

Options for ”Operator i = String”

height – Calculate height from bottom

depth – Calculate depth from top

index – index of layer starting from top

thickness – Calculate the thickness of the mesh

distance – Calculate the minimum distance to surface

StructuredProjectToPlane – Operators on variables

Options for ”Operator i = String”

sum – take the sum on all nodes on the extruded line

int – take the integral over the extruded line

min – take the minimum value

max – take the maximum value

Isosurface – take the value on the isosurface

– Additional required keywords:
Isosurface Variable i = String
Isosurface Value i = Real

StructuredProjectToPlane – Operators on vars…

Options for ”Operator i = String”

layer below top – Value at the given layer

layer above surface – Value at the given layer

Additional required keyword: Layer Index i = Integer

StructureProjectToPlane – operator ’int’ (simplified)

After the structured mesh is found line integrals
become really simple

Limitation: Higher order elements not used optimally

 CASE ('int')

 TopField = 0.0_dp
 DO i=1,nsize
 itop = TopPointer(i)

 dx = 0.5*(Coord(UpPointer(i)) - Coord(DownPointer(i)))

 TopField(TopPerm(itop)) = TopField(TopPerm(itop)) + dx * FieldIn(i)
 END DO

StructuredProjectToPlane: Example project.sif

Total of 12 different mapping operations on geometry
and temperature

 Operator 1 = depth
 Operator 2 = height
 Operator 3 = thickness
 Operator 4 = distance
 Operator 5 = index

 Variable 6 = Temperature
 Operator 6 = min
 Operator 7 = max
 Operator 8 = sum
 Operator 9 = int

 Operator 10 = isosurface
 Isosurface Variable 10 = String Coordinate 3
 Isosurface Value 10 = Real 0.5

 Operator 11 = Layer Below Top
 Layer Index 11 = Integer 3

 Operator 12 = Layer Above Bottom
 Layer Index 12 = Integer 3

Geometric
operators

GridDataReader - Getting the real data in

Typically elevations, temperature forcing etc. data is
available in a uniform (x,y) mesh in NetCDF files

– You may utilize GridDataReader to read this data

For documentation and explanation of keywords see Ch.
57 in Elmer Models Manual

Most important features

– Reading multiple fields

– Scaling, constant offsets, linear combination of fields

– Steady state & transient operation

– Linear interpolation for time and space

– Applicable to 2D and 3D cases

GridDataReader – Problem illustration

GridDataReader

Define the grid parameters of the NetCDF file

– hx, hy, x0, y0,…

Go through each node (x,y) in the FE mesh

– For each node the correct cell is found easily
i=floor((x-x0)/hx) and j=floor((y-y0)/hy)

– Field value then interpolated using bilinear interpolation
f(x,y)=pq f(i,j)+p(1-q) f(i,j+1)+
 (1-p)q f(i+1,j)+(1-p)(1-q) f(i+1,j+1)

Complexity O(N) & small memory consumption

– only one cell read at a time

If grid is not uniform finding of the correct cell is not as
easy

– Hack by Rupert, uses more memory & CPU-time

Summary

If you can utilize extruded meshes do so

Internal mesh extrusion

– Removes efficiently many meshing bottle-necks

Most importat solvers utilizing extruded structures

– StructuredMeshMapper

– StructuredProjectToPlane

Mesh mapping typically requires data

– GridDataReader for NetCDF input

– Internally solved field

Complexity of all operations is almost O(N)

– Optimal scalability for larger problems

