——

CSC

Internal extrusion

and
working with structured meshes

Peter Raback

ElmerTeam
CSC - IT Center for Science

Elmer/Ice advanced course
CSC, 4-6.11.2013

Outline *

CScC

@ About structured meshes in Elmer
@ Extrusion of meshes
v Utilizing extruded structures

Structured meshes for computational glaciology *

@ Generally ElImer treats all meshes in ElImer as
unstructured

@ In computational glaciology the footprint is always of
irregular shape

@ For optimal accuracy it makes sense that the number of
elements in depth direction does not vary

— Solution: 2D meshes + extrusion

v Extrusion strategies written mainly for computational
glaciology but may also have other used

Creating extruded meshes *

v ElmerGrid

— 2D Elmer mesh format -> extruded mesh
v Stand-alone program

— Written by Thomas
v Internal extrusion

— Performed on the parallel level

— Minimizes disk 1/0

— Removes memory bottle-necks

Bottle-necks in pre-processing *

CScC

v After the solution pre-processing is typically the 2nd
most time- and memory intensive task

@ Mesh partitioning is typically less laborious than mesh
generation

— In ElImer we haven’t utilized parallel graph partitioning
libraries (e.g. ParMetis)

o Serial mesh generation limited to around ~10 M
elements

Finalizing the mesh in parallel level *

CScC

v First make a coarse mesh and partition it

v Bisection of existing elements in each
direction
— 22DIM”"n -fold problem-size —
— Known as "Mesh Multiplication”

— Simple inheritance of mesh grading

@ Increase of element order (p-elements)

— p-hierarchy enables the use of p-multigrid

v Extrusion of 2D layer into 3D for special
cases

— Example: Greenland Ice-sheet / /ﬂ %

Standard parallel workflow ~-

v Both assembly and solution is done in parallel using MPI
v Assembly is trivially parallel
v This is the basic parallel workflow used for Elmer

MESHING NETGEN
PARTITIONING MET|S
ASSEMBLY 2%

9
SOLUTION Elmer
VISUALIZATION ’llPa raVlaw

Parallel workflow *

CSscC

v Large meshes may be finilized at the parallel level

MESHING

PARTITIONING

MESH
MULTIP./EXTR.

ASSEMBLY

SOLUTION

VISUALIZATION

Mesh multiplication, example

CSscC

Mesh Levels = 2

Mesh grading nicely
; preserved

Splitting effects visible
in partition interfaces

Mesh Multiplication, example

v Implemented in Elmer as internal strategy ~2005

v Mesh multiplication was applied to two meshes
— Mesh A: structured, 62500 hexahedrons
— Mesh B: unstructured, 65689 tetrahedrons

v The CPU time used is negligible

~-

CscC

T_center | T_graded
(s) (s)

o
w N NN W NN

4 M

32 M
420 M
420 M
33.63 M

128
128
12

128
128

0.469
0.039
0.310
0.369
0.019
0.201

0.769
0.069
0.549

Limitations of mesh multiplication *

CScC

v Standard mesh multiplication does not increase
geometric accuracy
— Polygons retain their shape
— Mesh multiplication could be made to honor boundary
shapes (done in Alya by BSC, Spain)
@ Optimal mesh grading difficult to achieve

— The coarsest mesh level does not usually have sufficient
information to implement fine level grading

Extrusion of partitioned meshes *

¢ Implemented as an internal strategy in EImer (2013)
— Juha, Peter & Rupert
o First partition a 2D mesh, then extrude into 3D
v Implemented also for partitioned meshes
— Extruded lines belong to the same partition by construction!

v Deterministic, i.e. element and node numbering determined
by the 2D mesh
— Complexity: O(N)

v There are many problems of practical problems where the
mesh extrusion of a initial 2D mesh provides a good solution

— One such field is glasiology where glaciers are thin, yet the 2D
approach is not always sufficient in accurary

Internal extrusion

Hide
Representation ¥

Color By L
Edit Color

N

Extruded Mesh Levels

*

CcscC

11

The number of levels is a bit
unintuitive as it refers to node layers.

By default z in [0,1]

Internal extrusion *

CScC

Extruded Mesh Levels = 11

I Extruded Mesh Ratio = 4.0

UnitSegmentDivision: Mesh division ready
UnitSegmentDivision: w(0) : 0.0000E+00

UnitSegmentDivision: w(1) : 4.9566E-02
UnitSegmentDivision: w(2) : 1.0650E-01

UnitSegmentDivision: w(3) : 1.7191E-01

UnitSegmentDivision: w(5) : 3.3333E-01

UnitSegmentDivision: w(6) : 4.3247E-01

)

)

)
UnitSegmentDivision: w(4) : 2.4703E-01

)

)

)

UnitSegmentDivision: w(7) : 5.4634E-01

UnitSegmentDivision: w(8) : 6.7714E-01

¢ UnitSegmentDivision: w(9) : 8.2740E-01
UnitSegmentDivision: w(10) : 1.0000E+00

Internal extrusion *
Just a dummy, refersto z in [0,1] “°€
Extruded Mesh Levels = 21 /
Extruded Mesh Density = Variable Coordinate 1
Real MATC "1+10*tx"

Internal extrusion *

Just a dummy, refersto z in [0,1] “°€

Extruded Mesh Levels 21 /
Extruded Mesh Density = Variable Coordinate 1

Real

0.01.0

0.3 5.0

1.0 5.0
End

Density characterized by a
mesh parameter h

Always the requested number
of layers generated!

Internal extrusion *

CScC

Extruded Mesh Levels 11

Extruded Mesh Density = Variable Coordinate 1
Real MATC "O0.2+sin(pi*tx)"

"

Any functional dependence
is ok as long as it is positive!

The optimal division is found
iteratively using Gauss-
Seidel type of iteration and
large variations make the
iterations converge slowly.

MeshExtrude subroutine in MeshUtils.src *

CScC

I> Given a 2D mesh extrude it to be 3D. The 3rd coordinate will always
I> be at the interval [0,1]. Therefore the adaptation for different shapes
I> must be done with StructuredMeshMapper, or some similar utility.

I> The top and bottom surface will be assigned Boundary Condition tags
I> with indexes one larger than the maximum used on by the 2D mesh.

TYPE(Mesh_t), POINTER :: Mesh_in, Mesh_out
INTEGER :: in_levels

UnitSegmentDivision in MeshUtils.src *

CscC

I> Create node distribution for a unit segment x \in [0,1] with n elements
I>i.e. n+1 nodes. There are different options for the type of distribution.
I> 1) Even distribution

I> 2) Geometric distribution

I> 3) Arbitrary distribution determined by a functional dependence

I> Note that the 3rd algorithm involves iterative solution of the nodal

I> positions and is therefore not bullet-proof.

SUBROUTINE UnitSegmentDivision(w, n)
REAL(KIND=dp), ALLOCATABLE :: w(:)
INTEGER :: n

| Compute the point in the local mesh xn \in [0,1]
I and get the mesh parameter for that element from
| external function.

xn = (w(i)+w(i-1))/2.0 _dp
h(i) = ListGetFun(CurrentModel %
Simulation,'Extruded Mesh Density', xn)
END DO

I Utilize symmetric Gauss-Seidel to compute the new
| positions, w(i) from a weighted mean of the desired
| elemental densities, h(i).

DO i=1,n-1

w(i) = (w(i-1)*h(i+1)+w(i+1)*h(i))/(h(i)+h(i+1))
END DO
DO i=n-1,1,-1

w(i) = (w(i-1)*h(i+1)+w(i+1)*h(i))/(h(i)+h(i+1))
END DO

dw oc h

CScC

Internal extrusion

Other keywords:

Extruded Coordinate Index = Integer

What coordinate to extrude

Extruded Min Coordinate = Real
Real

Extruded Max Coordinate
Override the default interval [0,1]

Preserve Baseline = Logical

Preserve the 1D boundary of the baseline

~-

CScC

1,2,3

Internal extrusion — numering of BCs *

CScC

v Side boundaries get a BC constraint so that
— 2D constraint BC = 1D contraint BC + offset
— offset is set if the baseline BCs are preserved

@ Top and bottom boundaries get the next free BC
constraint indexes

@ Note thet the BCs refer directly to the "Boundary
Condition”
— "Target Boundaries” is used only when reading in the mesh

in the 1st place and they are not available any more at this
stage

Internals extrusion — real shapes *

CScC

v The mesh division is only set along the 1D extruded line

v For true geometries some additional strategy is needed
to map the mesh between the real top and bottom
surfaces

— StructuredMeshMapper
— MeshUpdate solver

Internal extrusion: Example, AaltoVase *

Design Alvar Aalto, 1936

Internal extrusion: Example, extrude.sif

CSscC

P ATy
L
R s T

Ay
AT

I

il

.

iy
0

X

g
o

5
4“‘ Ly

X
5g
|3

i
O

v
il
ber
K

i

L

S
ey

A

Y,
5
i
b
5

%
)
ta

i
i
R
B
Pt
ko
7

)
:
2
Ty
v LA

5,
;‘
ot

!
5

i
%

2k

A
3
B

SN
gy,

I
X!
by

L

T

Xl
g
iR

o

v

[

R,

EIAA

AA
LT

(et
vy
e

oy
o
s
Ll

AT
;.m‘-.‘

2
UTITE,
ERTAYa Vv

AFAT

Ty

A
AR

oy

s

T
i ok
o A ity A i
A R v ey
O]
Ol rl o
A FATANT
ey e YA AW
PR AT
ELEPOEy
AL e A
(s

B
]
7
5

%

5

AT
e
i
s

T
o
2

" ¥
Ay

SO GO0
PN A ey X P S O
AP AL A 4
i

<
ol
QOTATE

AN

]
ggmﬂg‘t,_

:
o Br
L i R
S
o 2
R et ha
#ﬁfﬁa‘ﬂ’ﬁgﬁ'&’ﬂﬁf’
e a0 Fagr o
i S AT
5

5

ERFAr
S

w7
LT
O T
S TRy T
AR AT e e A
A SR
M r ATt oY
RO
LT oy Tl S o
R el 0

Y
Ly
e

i

rid!

=

T
\Ta¥

s ar
OE0

il

,
5]
ATAY
o

)

T
2
:
E L
L1

i,
i A
A

ST

)
E

15

AT

i
i

I
oA,
]

)

i
1
T

oy

i
A
o

o
N
17

12
N
iy
2.-
b

)

o
T

v%r

I

R
]

2

HE:
i
2y
kv
&
it

LYy
-
¥

,_
b
i

5

7
L

Rt

TR

|
il
ba:
Tk
i,
i
o
A
O iy
i,
Z
£
e
4 i
iy

i
&
2
¥
'3
ok
T
2
Ny

i
0

i)
¥
e
b'#“"\fg
¥l T
Fooy
SR
ANy
&

i
vl

5
i
Yﬁ:

A

ol

P
o
Ve
3%
5
.

|
ok
i 4' o

o
X
%,

i
N

it

2]
11

3
pa¥i?
i

3]
0

T
o

Y S AV

SFarg ARV} AWy

A SR
=

vy

R

e
Ry
Ty
A

i wr
PaXdyv
YR o0

S }1«#!

o

O VAT Yoy

T,

v
¥,

A

i
A
e
L
2EAT:
1;1 [
1

Fdod
T
s
3
-

‘

T
£

i

LAY,

2D mesh by Gmsh 3D internally extruded mesh

Play around with different options to see how your
vase is meshed.

Utilizing extruded structures *

CScC

o If the mesh is extruded it makes sense to utilize this fact
also in later steps

— Operators in the extruded directions

— Combination of full 3D and 2D higher order models
v Tailored solvers that assume extruded structure

— StructuredMeshMapper

— StructuredProjectToPlane

— StructuredFlowLine

@ No assumptions on the numbering of the nodes is
needed

DetectExtrudedStructure in MeshUtils.src *

CScC

I> This subroutine finds the structure of an extruded mesh even though it is

I> given in an unstructured format. The routine may be used by some special

I> solvers that employ the special character of the mesh.

I> The extrusion is found for a given direction and for each node the corresponding
I> up and down, and thereafter top and bottom node is computed.

SUBROUTINE DetectExtrudedStructure(Mesh, Solver, ExtVar, &
TopNodePointer, BotNodePointer, &
UpNodePointer, DownNodePointer, &
NumberOfLayers, Nodelayer)

DetectExtrudedStructure *

CScC

@ Go through each element

— If in the element vector spanned by two nodes (i,j) is
directed as extruded direction set
UpNodePointer(i)=j or DownNodePointer(i)=j

— Complexity O(N)
v Go through each element until no change

— TopNodePointer(i)=UpNodePointer(TopNodePointer(i))
BotNodePoiner(i)=DownNodePointer(BotNodePointer(i))

— Complexity O(N*N_z)

@ As a result we have for each node pointers to up and
down, and top and bottom nodes at the extruded line.

DetectExtrudedStructrure — Up, Down, Top, Bottom%

StructuredMeshMapper *

CScC

v Takes a mesh with an extruded structure
v Maps the mesh between its bottom and top surfaces
— Original relative element division is maintained

@ Various ways to define the displacement at the top and
bottom

— Constant
— Given field

— Variable for GetReal in boundary condition

v For documentation and explanation of keywords see Ch.
61 in ElImer Models Manual

StucturedMeshMapper vs. MeshSolve *

CscC

v Pros

— Much faster: complexity O(N)

— No convergence issues

— Retains the extruded form of the mesh
v Cons

— Applicable only to extruded meshes

— Currently does not compute mesh velocity
v Is this needed?

StructuredMeshMapper: Example map.sif *

CscC

v Mesh mapped using analytical functions

StructuredMeshMapper: Example map_temp.sif *

@ Mesh mapped using a given temperature field

StructuredProjectToPlane *

CScC

o Takes a mesh with an extruded structure

@ Maps data to top or bottom surface, but also to whole
mesh depending on the operator

— Complexity O(N) or O(N*N_z)

@ Works in parallel if each extruded line is in the same
partition
— No communication

v For documentation and explanation of keywords see Ch.
60 in ElImer Models Manual

— Documentation is not complete!

StructuredProjectToPlane — Operators on geometrv%

Options for "Operator i = String”

@ height — Calculate height from bottom

v depth — Calculate depth from top

v index — index of layer starting from top

v thickness — Calculate the thickness of the mesh

v distance — Calculate the minimum distance to surface

StructuredProjectToPlane — Operators on variabIeSjL

Options for "Operator i = String”

@ sum — take the sum on all nodes on the extruded line
v int —take the integral over the extruded line

@ min — take the minimum value

@ max — take the maximum value

@ |Isosurface — take the value on the isosurface

— Additional required keywords:
Isosurface Variable i = String
Isosurface Value i = Real

StructuredProjectToPlane — Operators on vars... *

Options for "Operator i = String”
v layer below top — Value at the given layer
v layer above surface — Value at the given layer
v Additional required keyword: Layer Index i = Integer

StructureProjectToPlane — operator ’int’ (simplified-)%

CscC

v After the structured mesh is found line integrals
become really simple

v Limitation: Higher order elements not used optimally

CASE ('int")
TopField =0.0 _dp
DO i=1,nsize
itop = TopPointer(i)

dx = 0.5*(Coord(UpPointer(i)) - Coord(DownPointer(i)))

TopField(TopPerm(itop)) = TopField(TopPerm(itop)) + dx * FieldIn(i)
END DO

StructuredProjectToPlane: Example project.sif $

CscC

v Total of 12 different mapping operations on geometry
and temperature

Operator 1 = depth
Operator 2 = height A
Operator 3 = thickness ¢ Geometric
Operator 4 = distance operators

Operator 5 =index __

Variable 6 = Temperature
Operator 6 = min
Operator 7 = max
Operator 8 = sum
Operator 9 = int

Operator 10 = isosurface
Isosurface Variable 10 = String Coordinate 3
Isosurface Value 10 = Real 0.5

Operator 11 = Layer Below Top
Layer Index 11 = Integer 3

Operator 12 = Layer Above Bottom
Layer Index 12 = Integer 3

GridDataReader - Getting the real data in *

CScC

v Typically elevations, temperature forcing etc. data is
available in a uniform (x,y) mesh in NetCDF files

— You may utilize GridDataReader to read this data

v For documentation and explanation of keywords see Ch.
57 in Elmer Models Manual
v Most important features
— Reading multiple fields
— Scaling, constant offsets, linear combination of fields
— Steady state & transient operation
— Linear interpolation for time and space
— Applicable to 2D and 3D cases

GridDataReader — Problem illustration

CscC

]
o

YAV,
Oy

Fra,

RO

GridDataReader *

CScC

v Define the grid parameters of the NetCDF file
— h, h, Xo Y-
@ Go through each node (x,y) in the FE mesh

— For each node the correct cell is found easily
i=floor((x-x,)/h,) and j=floor((y-y,)/h,)
— Field value then interpolated using bilinear interpolation
fxy)=pa f(i.j)+p(1-q) f(i,j+1)+
(1-p)a f(i+1,j)+(1-p)(1-q) f(i+1,j+1)

v Complexity O(N) & small memory consumption

— only one cell read at a time

v If grid is not uniform finding of the correct cell is not as
easy

— Hack by Rupert, uses more memory & CPU-time

Summary *

CScC

v If you can utilize extruded meshes do so
@ Internal mesh extrusion
— Removes efficiently many meshing bottle-necks
v Most importat solvers utilizing extruded structures
— StructuredMeshMapper
— StructuredProjectToPlane
v Mesh mapping typically requires data
— GridDataReader for NetCDF input
— Internally solved field
v Complexity of all operations is almost O(N)

— Optimal scalability for larger problems

