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Outline 

About structured meshes in Elmer 

Extrusion of meshes 

Utilizing extruded structures  



Structured meshes for computational glaciology 

Generally Elmer treats all meshes in Elmer as 
unstructured 

In computational glaciology the footprint is always of 
irregular shape  

For optimal accuracy it makes sense that the number of 
elements in depth direction does not vary 

– Solution: 2D meshes + extrusion 

Extrusion strategies written mainly for computational 
glaciology but may also have other used  



Creating extruded meshes 

ElmerGrid 

– 2D Elmer mesh format -> extruded mesh  

Stand-alone program 

– Written by Thomas 

Internal extrusion 

– Performed on the parallel level 

– Minimizes disk I/O 

– Removes memory bottle-necks 

 



Bottle-necks in pre-processing 

After the solution pre-processing is typically the 2nd 
most time- and memory intensive task 

Mesh partitioning is typically less laborious than mesh 
generation  

– In Elmer we haven’t utilized parallel graph partitioning 
libraries (e.g. ParMetis) 

Serial mesh generation limited to around ~10 M 
elements 

 



Finalizing the mesh in parallel level 

First make a coarse mesh and partition it 

Bisection of existing elements in each 
direction   

– 2^DIM^n -fold problem-size 

– Known as ”Mesh Multiplication” 

– Simple inheritance of mesh grading 

Increase of element order (p-elements) 

– p-hierarchy enables the use of p-multigrid 

Extrusion of 2D layer into 3D for special 
cases  

– Example: Greenland Ice-sheet 



Standard parallel workflow  

Both assembly and solution is done in parallel using MPI 

Assembly is trivially parallel 

This is the basic parallel workflow used for Elmer 

 

SOLUTION 

VISUALIZATION 

ASSEMBLY 

PARTITIONING 

MESHING 



Parallel workflow  

Large meshes may be finilized at the parallel level 

SOLUTION 

VISUALIZATION 

ASSEMBLY 

PARTITIONING 

MESHING 

MESH  
MULTIP./EXTR.                                                             



Mesh multiplication, example 

Splitting effects visible 
in partition interfaces 

Mesh grading nicely  
preserved 

Mesh Levels = 2  



Mesh Multiplication, example 

Implemented in Elmer as internal strategy ~2005 

Mesh multiplication was applied to two meshes 
– Mesh A: structured, 62500 hexahedrons 

– Mesh B: unstructured, 65689 tetrahedrons 

The CPU time used is negligible 

Mesh #splits #elems #procs T_center 
(s) 

T_graded 
(s) 

A 2 4 M 12 0.469 0.769 

2 4 M 128 0.039 0.069 

3 32 M 128 0.310 0.549 

B 2 4.20 M 12 0.369 

2 4.20 M 128 0.019 

3 33.63 M 128 0.201 



Limitations of mesh multiplication 

Standard mesh multiplication does not increase 
geometric accuracy  

– Polygons retain their shape 

– Mesh multiplication could be made to honor boundary 
shapes (done in Alya by BSC, Spain) 

Optimal mesh grading difficult to achieve 

– The coarsest mesh level does not usually have sufficient 
information to implement fine level grading 

 



Extrusion of partitioned meshes 

Implemented as an internal strategy in Elmer (2013) 

– Juha, Peter & Rupert 

First partition a 2D mesh, then extrude into 3D 

Implemented also for partitioned meshes 

– Extruded lines belong to the same partition by construction! 

Deterministic, i.e. element and node numbering determined 
by the 2D mesh 

– Complexity: O(N) 

There are many problems of practical problems where the 
mesh extrusion of a initial 2D mesh provides a good solution 
– One such field is glasiology where glaciers are thin, yet the 2D 

approach is not always sufficient in accurary 



Internal extrusion 

Extruded Mesh Levels = 11 

By default z in [0,1] 

The number of levels is a bit  
unintuitive as it refers to node layers. 



Internal extrusion 

Extruded Mesh Levels = 11 

Extruded Mesh Ratio = 4.0 

UnitSegmentDivision: Mesh division ready 
UnitSegmentDivision: w(0) :   0.0000E+00 
UnitSegmentDivision: w(1) :   4.9566E-02 
UnitSegmentDivision: w(2) :   1.0650E-01 
UnitSegmentDivision: w(3) :   1.7191E-01 
UnitSegmentDivision: w(4) :   2.4703E-01 
UnitSegmentDivision: w(5) :   3.3333E-01 
UnitSegmentDivision: w(6) :   4.3247E-01 
UnitSegmentDivision: w(7) :   5.4634E-01 
UnitSegmentDivision: w(8) :   6.7714E-01 
UnitSegmentDivision: w(9) :   8.2740E-01 
UnitSegmentDivision: w(10) :   1.0000E+00 



Internal extrusion 

Extruded Mesh Levels = 21 

Extruded Mesh Density = Variable Coordinate 1 

  Real MATC "1+10*tx" 

Just a dummy, refers to z in [0,1] 



Internal extrusion 

Extruded Mesh Levels = 21 

Extruded Mesh Density = Variable Coordinate 1 

  Real 

    0.0 1.0 

    0.3 5.0 

    1.0 5.0   

  End 

Just a dummy, refers to z in [0,1] 

Density characterized by a  
mesh parameter h 
 
 
Always the requested number 
of layers generated! 



Internal extrusion 

Extruded Mesh Levels = 11 

Extruded Mesh Density = Variable Coordinate 1 

  Real MATC "0.2+sin(pi*tx)" 

Any functional dependence 
is ok as long as it is positive! 
 
The optimal division is found 
iteratively using Gauss-
Seidel type of iteration and 
large variations make the 
iterations converge slowly.  



!------------------------------------------------------------------------------ 
!> Given a 2D mesh extrude it to be 3D. The 3rd coordinate will always 
!> be at the interval [0,1]. Therefore the adaptation for different shapes 
!> must be done with StructuredMeshMapper, or some similar utility.  
!> The top and bottom surface will be assigned Boundary Condition tags 
!> with indexes one larger than the maximum used on by the 2D mesh.  
!------------------------------------------------------------------------------ 
  FUNCTION MeshExtrude(Mesh_in, in_levels) RESULT(Mesh_out) 
!------------------------------------------------------------------------------ 
    TYPE(Mesh_t), POINTER :: Mesh_in, Mesh_out 
    INTEGER :: in_levels 
!------------------------------------------------------------------------------ 
 ….. 
  

MeshExtrude subroutine in MeshUtils.src 



UnitSegmentDivision in MeshUtils.src 

!------------------------------------------------------------------------------ 
!> Create node distribution for a unit segment x \in [0,1] with n elements  
!> i.e. n+1 nodes. There are different options for the type of distribution. 
!> 1) Even distribution  
!> 2) Geometric distribution 
!> 3) Arbitrary distribution determined by a functional dependence 
!> Note that the 3rd algorithm involves iterative solution of the nodal 
!> positions and is therefore not bullet-proof. 
!------------------------------------------------------------------------------ 
  SUBROUTINE UnitSegmentDivision( w, n ) 
    REAL(KIND=dp), ALLOCATABLE :: w(:) 
    INTEGER :: n 
    !--------------------------------------------------------------- 



! Compute the point in the local mesh xn \in [0,1]   
! and get the mesh parameter for that element from 
! external function. 
!--------------------------------------------------- 
DO i=1,n 
  xn = (w(i)+w(i-1))/2.0_dp 
  h(i) = ListGetFun( CurrentModel %  
         Simulation,'Extruded Mesh Density', xn ) 
END DO 
 
! Utilize symmetric Gauss-Seidel to compute the new 
! positions, w(i) from a weighted mean of the desired 
! elemental densities, h(i). 
!---------------------------------------------------- 
DO i=1,n-1 
  w(i) = (w(i-1)*h(i+1)+w(i+1)*h(i))/(h(i)+h(i+1)) 
END DO 
DO i=n-1,1,-1 
  w(i) = (w(i-1)*h(i+1)+w(i+1)*h(i))/(h(i)+h(i+1)) 
END DO 

dw  h 



Internal extrusion 

Other keywords: 

 

Extruded Coordinate Index = Integer ! 1,2,3 

What coordinate to extrude 

 

Extruded Min Coordinate = Real 

Extruded Max Coordinate = Real 

Override the default interval [0,1] 

 

Preserve Baseline = Logical 

Preserve the 1D boundary of the baseline 



Internal extrusion – numering of BCs 

Side boundaries get a BC constraint so that  

– 2D constraint BC = 1D contraint BC + offset 

– offset is set if the baseline BCs are preserved 

Top and bottom boundaries get the next free BC 
constraint indexes 

 

 

Note thet the BCs refer directly to the ”Boundary 
Condition” 

– ”Target Boundaries” is used only when reading in the mesh 
in the 1st place and they are not available any more at this 
stage 



Internals extrusion – real shapes 

The mesh division is only set along the 1D extruded line 

For true geometries some additional strategy is needed 
to map the mesh between the real top and bottom 
surfaces 

– StructuredMeshMapper  

– MeshUpdate solver 



Internal extrusion: Example, AaltoVase 

Design Alvar Aalto, 1936 



Internal extrusion: Example, extrude.sif 

Play around with different options to see how your 
vase is meshed.  

2D mesh by Gmsh 
3D internally extruded mesh 



Utilizing extruded structures  

If the mesh is extruded it makes sense to utilize this fact 
also in later steps 

– Operators in the extruded directions 

– Combination of full 3D and 2D higher order models 

Tailored solvers that assume extruded structure 

– StructuredMeshMapper 

– StructuredProjectToPlane 

– StructuredFlowLine 

No assumptions on the numbering of the nodes is 
needed 



DetectExtrudedStructure in MeshUtils.src 
 

!-------------------------------------------------------------------------- 
!> This subroutine finds the structure of an extruded mesh even though it is  
!> given in an unstructured format. The routine may be used by some special 
!> solvers that employ the special character of the mesh. 
!> The extrusion is found for a given direction and for each node the corresponding  
!> up and down, and thereafter top and bottom node is computed. 
!----------------------------------------------------------------------------- 

  SUBROUTINE DetectExtrudedStructure( Mesh, Solver, ExtVar, & 
      TopNodePointer, BotNodePointer,  & 
      UpNodePointer, DownNodePointer, & 
      NumberOfLayers, NodeLayer ) 



DetectExtrudedStructure 

Go through each element  

– If in the element vector spanned by two nodes (i,j) is 
directed as extruded direction set  
UpNodePointer(i)=j or DownNodePointer(i)=j  

– Complexity O(N) 

Go through each element until no change 

– TopNodePointer(i)=UpNodePointer(TopNodePointer(i)) 
BotNodePoiner(i)=DownNodePointer(BotNodePointer(i)) 

– Complexity O(N*N_z) 

 

As a result we have for each node pointers to up and 
down, and top and bottom nodes at the extruded line. 



DetectExtrudedStructrure – Up, Down, Top, Bottom 

Up 

Down 

Bottom 

Top 



StructuredMeshMapper 

Takes a mesh with an extruded structure 

Maps the mesh between its bottom and top surfaces 

– Original relative element division is maintained  

Various ways to define the displacement at the top and 
bottom 

– Constant 

– Given field 

– Variable for GetReal in boundary condition  

For documentation and explanation of keywords see Ch. 
61 in Elmer Models Manual 

 



StucturedMeshMapper vs. MeshSolve 

Pros 

– Much faster: complexity O(N) 

– No convergence issues 

– Retains the extruded form of the mesh 

Cons  

– Applicable only to extruded meshes 

– Currently does not compute mesh velocity  

Is this needed? 



StructuredMeshMapper: Example map.sif 

Mesh mapped using analytical functions  



StructuredMeshMapper: Example map_temp.sif 

Mesh mapped using a given temperature field  



StructuredProjectToPlane 

Takes a mesh with an extruded structure 

Maps data to top or bottom surface, but also to whole 
mesh depending on the operator 

– Complexity O(N) or O(N*N_z)  

Works in parallel if each extruded line is in the same 
partition 

– No communication 

For documentation and explanation of keywords see Ch. 
60 in Elmer Models Manual 

– Documentation is not complete! 

 



StructuredProjectToPlane – Operators on geometry 

Options for ”Operator i = String” 

height – Calculate height from bottom 

depth – Calculate depth from top 

index – index of layer starting from top 

thickness – Calculate the thickness of the mesh 

distance – Calculate the minimum distance to surface  



StructuredProjectToPlane – Operators on variables 

Options for ”Operator i = String” 

sum – take the sum on all nodes on the extruded line 

int – take the integral over the extruded line 

min – take the minimum value  

max – take the maximum value 

Isosurface – take the value on the isosurface 

– Additional required keywords: 
Isosurface Variable i = String 
Isosurface Value i = Real 

 



StructuredProjectToPlane – Operators on vars… 

Options for ”Operator i = String” 

layer below top – Value at the given layer 

layer above surface – Value at the given layer 

Additional required keyword:  Layer Index i = Integer  

 

 



StructureProjectToPlane – operator ’int’ (simplified) 

After the structured mesh is found line integrals 
become really simple 

Limitation: Higher order elements not used optimally  

 
 CASE ('int') 

        TopField = 0.0_dp 
        DO i=1,nsize 
          itop = TopPointer(i) 
 
          dx = 0.5*(Coord(UpPointer(i)) - Coord(DownPointer(i))) 
 
          TopField(TopPerm(itop)) = TopField(TopPerm(itop)) + dx * FieldIn(i) 
        END DO 



StructuredProjectToPlane: Example project.sif 

Total of 12 different mapping operations on geometry 
and temperature 

  Operator 1 = depth 
  Operator 2 = height 
  Operator 3 = thickness 
  Operator 4 = distance 
  Operator 5 = index 
 
  Variable 6 = Temperature 
  Operator 6 = min 
  Operator 7 = max 
  Operator 8 = sum 
  Operator 9 = int 
   
  Operator 10 = isosurface 
  Isosurface Variable 10 = String Coordinate 3 
  Isosurface Value 10 = Real 0.5 
 
  Operator 11 = Layer Below Top 
  Layer Index 11 = Integer 3 
 
  Operator 12 = Layer Above Bottom 
  Layer Index 12 = Integer 3 

Geometric  
operators 



GridDataReader - Getting the real data in 

Typically elevations, temperature forcing etc. data is 
available in a uniform (x,y) mesh in NetCDF files 

– You may utilize GridDataReader to read this data 

For documentation and explanation of keywords see Ch. 
57 in Elmer Models Manual 

Most important features 

– Reading multiple fields 

– Scaling, constant offsets, linear combination of fields 

– Steady state & transient operation 

– Linear interpolation for time and space 

– Applicable to 2D and 3D cases 

 

 



GridDataReader – Problem illustration 



GridDataReader 

Define the grid parameters of the NetCDF file 

– hx, hy, x0, y0,… 

Go through each node (x,y) in the FE mesh 

– For each node the correct cell is found easily 
i=floor((x-x0)/hx)  and  j=floor((y-y0)/hy) 

– Field value then interpolated using bilinear interpolation 
f(x,y)=pq f(i,j)+p(1-q) f(i,j+1)+ 
           (1-p)q f(i+1,j)+(1-p)(1-q) f(i+1,j+1) 

Complexity O(N) & small memory consumption 

– only one cell read at a time 

If grid is not uniform finding of the correct cell is not as 
easy 

– Hack by Rupert, uses more memory & CPU-time 



Summary 

If you can utilize extruded meshes do so 

Internal mesh extrusion 

– Removes efficiently many meshing bottle-necks 

Most importat solvers utilizing extruded structures 

– StructuredMeshMapper 

– StructuredProjectToPlane 

Mesh mapping typically requires data 

– GridDataReader for NetCDF input 

– Internally solved field 

Complexity of all operations is almost O(N) 

– Optimal scalability for larger problems 

 


