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1. Motivation and background

• The theme of this presentation: Efficient ways to obtain scalar coefficients
(referred to as degrees of freedom) uj = [uj vj wj]T and pj such that the
associated finite element (FE) expansions of velocity and pressure fields

uh : Ω→ R3 and ph : Ω→ R,

which are expressed as

uh(x) =
Nu∑
j=1

ujφj(x), ph(x) =
Np∑
k=1

pjψk(x),

solve a FE version of variable-viscosity Stokes equations posed on the ice region
Ω.

• A bottom line is that this is basically a linear algebra problem

• Special techniques are required to obtain efficiency!
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The scope of ideas

• The special methods to be described are suitable for obtaining discrete
approximations to the solution characterized by

−div[2µ(D)D(u)] +∇p = ρg,

−div u = 0
(1)

subject to the boundary conditions

u = û on ΓD,

2µ(D)D(u)n− pn = ŝ on ΓN ,

u · n = 0 and n× [2µ(D)D(u)n]× n = −βn× u× n on ΓS.

(2)

• Here û is the specified velocity, ŝ is the specified traction and also β > 0 is
given as initial data.
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Obtaining the linear algebra problem associated with the FE approximation

• The associated FE problem is of the form: Find (uh, ph) ∈ Uh such that∫
Ω

2µ(D(uh))D(uh) ·D(vh) dΩ +
∫
ΓS

β(n× uh × n) · vh dS −
∫
Ω

ph∇ · vh dΩ

=
∫
Ω

ρg · vh dΩ +
∫

ΓN

ŝ · vh dS

−
∫
Ω

∇ · uhqh dΩ = 0

for any (vh, qh) ∈ Vh.

• This gives a nonlinear system of algebraic equations (with U and P containing
the velocity and pressure degrees of freedom)[

A(U) BT

B 0

] [
U
P

]
=
[

F
0

]
. (3)
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Obtaining the linear algebra problem...

• The final step is linearization to obtain a sequence of linear algebra problems
for solving the nonlinear problem iteratively.

• The simplest strategy is to use the lagged value approximation of the viscosity,
so that at the step k + 1 of the nonlinear iteration we need to solve[

Ak BT

B 0

] [
Uk+1

Pk+1

]
=
[

F
0

]
, (4)

with the entries of Ak arising from the computation of integrals∫
Ω

2µ(D(uk
h))D(uk+1

h ) ·D(vh) dΩ.

• The Newton linearization is another option (some details to follow), but also
then the system has the natural (2× 2) block structure
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Solution strategies for the linear algebra problem

• Applying direct solution methods to[
Ak BT

B 0

] [
Uk+1

Pk+1

]
=
[

F
0

]
(5)

is not an optimal strategy.

• Using iterative linear solvers, in combination with an effective preconditioner, is
the best approach.

• A key issue: If the linear system (5) is abbreviated as Kx = b, we need an
efficient preconditioner P which makes solving

KP−1z = b, with Pz = x,

quick and which is also amenable for a parallel implementation.



CSC - IT Center for Science Ltd. Mika Malinen

On flow solvers of Elmer

• Elmer/Ice simulations have traditionally been based on the general
Navier–Stokes (NS) flow solver of Elmer.

• The general preconditioning strategies available in connection with the standard
NS solver are not best suited for handling saddle point problems of the type we
need to handle here

• To circumvent this performance bottleneck, a separate Stokes flow solver has
been written in order to enable the use of an alternate preconditioning strategy
which is effective.

• The first version of this alternate solver was made public in January, 2012.

• The solver code is contained in the file ../fem/src/modules/ParStokes.src

• Utilizing the solver in parallel has been in mind from the very beginning (the
file name comes from Parallel Stokes solver)
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2. The block preconditioning strategy

• An alternate view on preconditioning: Instead of handling the
preconditioned system KP−1z = b to produce iterates of z = Px, we consider
generating iterates x(k) (via applying the generalized conjugate residual, GCR,
method) that minimize the residual 2-norm

||b−Kx(k)||

over the space
Xk = x(0) + span{s(1), s(2), . . . , s(k)}

• In this setting, we define the preconditioner to be the operator which, given the
previous iterate, produces the new search direction s(k).

• The standard choice is to solve the residual correction system

Ps(k+1) = b−Kx(k)

with P ≈ K, but approximating the original coefficient matrix is not a necessity.
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• For systems of the form [
A BT

B C

] [
V
P

]
=
[

F
G

]
,

a common choice for the preconditioner is

P =
[

A BT

0 Q

]
. (6)

• An optimal Q corresponds to the Schur complement matrix C−BA−1BT .

• In the case of discrete Stokes equations a usual way is to select

Q = ε−1M, M = [Mij], Mij =
∫
Ω

ψjψj dΩ (7)

with ε the viscosity from the previous nonlinear iteration and M is the pressure
mass matrix.
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• It is known that this choice of the preconditioner is optimal when the viscosity
is constant.

• However, no sharp theory exists for predicting the preconditioner performance
when variable-viscosity flows are solved.

• Anyhow, we have experimental evidence that the scaled mass matrix
approximation of the Schur complement may work surprisingly well.

• More advanced approximations are possible but not motivated in the light of
experimental results.
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3. The overview of the ParStokes module

• The block preconditioned GCR iteration is in-built into the ParStokes module.

• Otherwise the alternate Stokes solver contained in the ParStokes module
basically mimics the standard NS solver of Elmer

• However, it does not provide all features available in the standard NS solver.

• Stable finite element approximation of the weak formulation necessitates using
different approximation spaces for the velocity and pressure.

• In the ParStokes solver, the velocity approximation is augmented by
elementwise bubble functions to obtain stability.

• Using the Newton iteration is also an option.
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Applying the block preconditioner

• At each block preconditioned GCR iteration step we need to solve
approximately the system[

A BT

0 Q

] [
δV(k+1)

δP(k+1)

]
=
[

F−AV(k) −BTP(k)

G−BV(k) −CP(k)

]
. (8)

• The user must thus define methods for solving subproblems of the type

QδP(k+1) = R(k)
P and AδV(k+1) = R(k)

A −BTδV(k+1)

or, in practice, their preconditioned versions

(QP−1
Q )δP̂(k+1) = R(k)

P and (AP−1
A )δV̂(k+1) = R(k)

A −BTδV(k+1)

• Selecting the preconditioner PQ is an easy task. The choice of PA is more
difficult and critical to the performance.
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The requirements for an ideal block preconditioning strategy

It is hoped that

• The block preconditioner P is such that the outer GCR iteration counts do not
severely depend on the problem size and variations of essential model
parameters

• The subsidiary computations corresponding to the application of the
preconditioner can be done efficiently (in an ideal case by exploiting optimal
complexity solvers).

If the block preconditioner P is robust in the above sense, parallel scalability
(weak) depends primarily on the scalability of the subsidiary computations. Ways
to improve the efficiency of the subsidiary computations:

• Interfacing with external linear algebra libraries (Hypre, Trilinos)

• Inaccurate solves of the subsidiary problems: a high accuracy is not needed
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Bubble stabilization utilized in the ParStokes solver

• The velocity FE space is taken to be Uh = Sh +Bh, with Sh the standard
space based on the first-order polynomials P1(K̂) and Bh the bubble space

Bh = {vh | vh|K = (v̂ ◦ f−1
K )(x), v̂ ∈ Pr(K̂) and vh|∂K = 0 ∀K = fK(K̂)}.

• Some possible choices for the order r of the space Pr(K̂) in the definition of
the bubble space (1 = not recommended, 2 = typical choice)

element r #element bubbles/dof
brick1 6 1
brick2 7 4

tetrahedron1 4 1
tetrahedron2 5 4

wedge1 5 1
wedge2 6 4

• That is, in the sif file (in 3-D) use the element definition Element = p:1 b:4
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Bubble stabilization continued

• We eliminate additional bubble degrees of freedom via the static condensation
so that the unknowns to be solved correspond to standard nodal values.

• The static condensation ⇒ the (2,2)-block of the system matrix is nontrivial,
i.e. C 6= 0.

• Assembly is expensive due to integrating bubble contributions accurately

• The ”degree of stability” may be adjusted in a flexible manner by increasing the
polynomial order of bubble functions.
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Newton linearization for Glen’s flow law µ(D) = 1/2A−k[I2(D)](k−1)/2

• Define g(D) = [I2(D)](k−1)/2D, with I2(D) = 1/2(D ·D), to obtain the
derivative

Dg(D)[U] = µ(D)U + {k − 1
2

[I2(D)](k−3)/2D ·U}D

and the linearization

g(Dk+1) = g(Dk) + Dg(Dk)[Dk+1 −Dk].

• This leads to the Newton approximation

g(Dk+1) = −k − 1
2

[I2(Dk)](k−3)/2(Dk ·Dk)Dk+

k − 1
2

[I2(Dk)](k−3)/2(Dk ·Dk+1)Dk + [I2(Dk)](k−1)/2Dk+1.

• This alters the definition of the A-block and the RHS vector.
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Figure 1: The nonlinear residual norm for different linearization strategies to solve
a Midtre Lovénbreen flow (A = 10−16Pa−3a−1 ): the blue curve corresponds to
Picard linearization, while the red, magenta and green curves correspond to hybrid
linearization based on threshold values δNL = 10−1/2, 10−2, 10−3 for switching
from the Picard linearization to the Newton scheme.
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4. Creating the solver input file and keywords

With the block preconditioned solver iterations are done at three levels:

• Nonlinear iteration to satisfy∥∥∥∥ [ Fk

Gk

]
−
[

A(Uk) BT

B C

] [
Uk

Pk

] ∥∥∥∥ = εN

∥∥∥∥ [ Fk

Gk

] ∥∥∥∥
• Linear solver iteration (inside the nonlinear iteration) to satisfy

∥∥∥∥ [ Fk

Gk

]
−
[

A(Uk) BT

B C

][
U(j)

k+1

P(j)
k+1

]∥∥∥∥ = εL

∥∥∥∥ [ Fk

Gk

] ∥∥∥∥
• Linear solver iterations for the preconditioning subproblems to satisfy

‖R(k)
P −QδP(k+1)‖ = εQ‖R(k)

P ‖ and ‖R̂(k)
A −AδV(k+1)‖ = εA‖R̂(k)

A ‖,

with R̂(k)
A = R(k)

A −BTδV(k+1).
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Three solver sections (at least) are needed in the Elmer solver input file:

Solver 1
Equation = "Pressure Preconditioning"
! The following commands control the solution of pressure
! preconditioning problems
· · ·

End

Solver 2
Equation = "Velocity Preconditioning"
! The following commands control the solution of velocity
! preconditioning problems
· · ·

End

Solver 3
Equation = "Stokes equations"
! Commands for solving the Stokes system
· · ·

End
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Solver 3
Equation = "Stokes equations"
Procedure = "ParStokes" "StokesSolver"
Variable = FlowVar
Variable DOFs = 4
Element = "p:1 b:4"
Bubbles in Global System = Logical False
Nonlinear System Convergence Tolerance = 1.0e-5 ! equals εN

Nonlinear System Max Iterations = 50
Nonlinear System Newton After Tolerance = 1.0e-3
Linear System Row Equilibration = Logical True
Linear System Solver = "Iterative"
Linear System Iterative Method = "GCR"
Linear System Max Iterations = 200
Linear System Convergence Tolerance = 1.0e-7 ! equals εL

Linear System GCR Restart = Integer 50
Block Preconditioning = Logical True

End
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The solver section for the Stokes equations: Additional details

• The command Bubbles in Global System = Logical False is used to
eliminate the bubble degrees of freedom before the linear solve.

• The command Block Preconditioning = Logical True activates the use
of block preconditioning.

• Giving Linear System Row Equilibration = Logical True is
recommended. The row equilibration of the system matrix is then done, so that
the condition number of the scaled system matrix is minimal (with respect to
the ∞-norm).

• The Linear System GCR Restart command defines the iteration count m
after which the GCR iteration is restarted (to constrain the dimension of the
search space Xk). The linear solver is then GCR(m).

• Compile with elmerf90 ParStokes.f90 -o ParStokes.so
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Solver 1
Equation = "Pressure Preconditioning"
Procedure = "PressurePrecond" "PressurePrecond"
Exec Solver = "before simulation"
Variable = -dofs 1 "P"
Variable Output = False
Element = "p:1"
Linear System Solver = iterative
Linear System Iterative Method = BiCGStabL
Linear System Max Iterations = 1000
Linear System Convergence Tolerance = 1.0e-6 ! equals εQ

Linear System Preconditioning = None
Skip Compute Nonlinear Change = Logical True
Back Rotate N-T Solution = Logical False

End
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The solver section for pressure preconditioning: Additional details

• The equation name must be "Pressure Preconditioning"

• If the normal-tangential BCs are given, Back Rotate N-T Solution =
Logical False must be given (explanation for this is technical).

• This solver section is used to generate the matrix structure for the pressure
preconditioning before attempting to solve the Stokes system, so giving Exec
Solver = "before simulation" is enough.

• The module file PressurePrecond.so is obtained by compiling a dummy
solver:

. Get PressurePrecond.src from
../fem/src/modules/PressurePrecond.src

. Rename it as PressurePrecond.f90

. Compile with elmerf90 PressurePrecond.f90 -o PressurePrecond.so

• The above values of the keywords should provide a good starting point.
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Solver 2
Equation = "Velocity Preconditioning"
Procedure = "VelocityPrecond" "VelocityPrecond"
Exec Solver = "before simulation"
Variable = -dofs 3 "V"
Variable Output = False
Element = "p:1"
Linear System Scaling = Logical True
Linear System Row Equilibration = Logical True
Linear System Solver = Iterative
Linear System Iterative Method = BiCGStabL
Linear System Max Iterations = 1000
Linear System Convergence Tolerance = 1.0e-3 ! equals εA

Linear System Preconditioning = ILU0
Skip Compute Nonlinear Change = Logical True
Back Rotate N-T Solution = Logical False

End
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The solver section for velocity preconditioning: Additional details

• The equation name must be "Velocity Preconditioning"

• If the normal-tangential BCs are given, Back Rotate N-T Solution =
Logical False must again be given.

• This solver section is used to generate the matrix structure for the velocity
preconditioning before attempting to solve the Stokes system, so giving Exec
Solver = "before simulation" is enough.

• The module file VelocityPrecond.so is obtained by compiling a dummy
solver:

. Get VelocityPrecond.src from
../fem/src/modules/VelocityPrecond.src

. Rename it as VelocityPrecond.f90

. Compile with elmerf90 VelocityPrecond.f90 -o VelocityPrecond.so

• Some of the above keyword commands starting with Linear System may
need to be changed to obtain a scalable solver.
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Giving boundary conditions for the velocity preconditioner

• If the Dirichlet boundary condition of the type u = û is specified, the variable
of the velocity preconditioning equation δV (the Elmer variable V above) must
also be constrained similarly by using the homogeneous Dirichlet condition:

Boundary Condition 1
...
FlowVar 1 = Real 0.0
FlowVar 2 = Real 0.0
FlowVar 3 = Real 0.0
V 1 = Real 0.0
V 2 = Real 0.0
V 3 = Real 0.0

End

• Usually no need to specify boundary conditions for the pressure preconditioning
variable.
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Adaptive convergence tolerances

• If the error corresponding to the nonlinear system is large, using a high
accuracy to solve the linearized system which defines the next nonlinear iterate
is not necessary.

• The stopping tolerance for the linear system can be adjusted adaptively:

Solver 3
· · ·
Linear System Convergence Tolerance = 1.0e-7 ! equals εL

Linear System Adaptive Tolerance = Logical True
Linear System Relative Tolerance = Real 1e-2 ! to define ηR

Linear System Base Tolerance = Real 1.0e-3 ! to define εB

· · ·

• At the step k + 1 of the nonlinear iteration this replaces the fixed tolerance εL

by ε
(k+1)
L = ηR · η(k)

N , with η
(k)
N the previous nonlinear error.

• However, ε
(k+1)
L is never made larger than εB or smaller than the given εL.
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5. Monitoring convergence and some practical tips

• The nonlinear iteration outputs ‖bk −K(xk)xk‖2/‖bk‖2 (available at the
beginning of the step k + 1)

• The preconditioned GCR outputs ‖bk −K(xk)x(j)
k+1‖2/‖bk‖2

...
StokesSolver: Residual for nonlinear iterate 2 7.750E-02
...
Outer Iteration: GCR residual for iterate 0 7.750E-02
...
Outer Iteration: GCR residual for iterate 1 5.171E-02
...
Outer Iteration: GCR residual for iterate 6 5.113E-04
...
StokesSolver: Residual for nonlinear iterate 3 4.363E-02
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• Having high element aspect ratios, etc., may affect the performance and make
solving the subsidiary problems less straightforward

• If you have a mesh ready, it may be a good practice to start by solving the
Stokes equations with a constant viscosity on it in order to identify a good
solver for the A-block.

• The block preconditioner should be ideal for the constant viscosity case.

• If the convergence of the outer GCR iteration is not satisfactory then, the mesh
may contain pathologies. Consider improving mesh, as things are not likely to
improve when viscosity variations are taken into account.
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6. Examples

Key issues in performance

• A thin domain ⇒ high element aspect ratios ⇒ weakened finite element
stability may have an effect on the effectiveness of the preconditioner

• The robustness of the preconditioner with respect to natural/large variations of
the ice viscosity

• The solver performance for different linearization strategies

• The efficiency and scalability depends critically on subproblem solves with the
coefficient matrix A.

• Note also that the use of the stress-divergence form couples the solution of the
components of the velocity, i.e. A is not block diagonal
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Figure 2: The partitioned mesh for Midtre Lovénbreen glacier (114080 nodes).
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Preconditioned iteration counts for systems arising from different
linearizations to solve a Midtre Lovénbreen flow (A = 10−16Pa−3a−1 )

Picard Hybrid δNL = 10−1/2 Hybrid δNL = 10−2

Nonlin Step Iters Linearization/Iters Linearization/Iters
0 24 Picard/24 Picard/24
1 20 Picard/20 Picard/20
2 19 Picard/19 Picard/19
3 18 Picard/18 Picard/18
4 17 Picard/17 Picard/17
5 15 Newton/20 Picard/15
6 14 Newton/19 Picard/14
7 13 Newton/15 Picard/13
8 13 Newton/7 Picard/13
9 12 Convergence Newton/16
10 11 Newton/14
11 10 Newton/7
12 9 Convergence
13. . .24 4.5 (Aver.)
25 Convergence
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Preconditioned iteration counts for systems arising from different
linearizations to solve ISMIP-HOM benchmark problem A with L = 5 km

Picard Hybrid δNL = 10−2/2 Hybrid δNL = 10−2

Nonlin Step Iters Linearization/Iters Linearization/Iters
0 16 Picard/16 Picard/16
1 9 Picard/9 Picard/9
2 9 Picard/9 Picard/9
3 9 Picard/9 Picard/9
4 9 Picard/9 Newton/9
5 8 Newton/9 Newton/13
6 8 Newton/8 Newton/14
7 7 Newton/7 Newton/9
8 6 Convergence Newton/7
9 6 Convergence
10 5
11 5
12 4
13 4
14 Convergence
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The effect of the element aspect ratio αK on the efficiency of the
preconditioner

• The ISMIP-HOM benchmark problem A with L = 80 km is solved on
N ×N ×M mesh
• The element aspect ratio αK ∼ diam(K)/(shortest element edge) varied
• The number n of mesh nodes kept approximately the same.
• N0

GCR is the number of preconditioned GCR iterations to solve the initial guess.
• The initial guess is characterized by the Stokes equations with a constant

viscosity (taking I2(D) = 1).

N M αK n N0
GCR

160 10 5 285131 18
128 16 10 282897 23
104 25 19.2 286650 25
90 34 30.2 289835 29
82 41 40 289338 30
65 65 80 287496 34
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The robustness with respect to the problem size

• The ISMIP-HOM benchmark problem A with L = 5 km is solved on
N ×N ×M mesh.
• The element aspect ratio αK = 5 is kept to be the same.
• N0

GCR is the number of preconditioned GCR iterations to solve the initial guess
characterized by the Stokes equations with a constant viscosity.

N n N0
GCR

20 9261 23
30 29791 25
40 68921 27
50 132651 29
60 226981 30
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Key observations

• The robustness is not perfect but fairly satisfying

• The element aspect ratio affects the performance more clearly than the problem
size

• If weak scalability is tested by refining the mesh only in the horizontal
directions, super-linear scaling may be possible due to the decreasing αK

• The preconditioner is effective for Newton systems also

• The scaled mass matrix approximation of the Schur complement work
surprisingly well. More advanced approximations are possible but not motivated
in the light of experimental results.
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Opportunities to build a fully scalable solver

• The efficiency and scalability depends critically on solves with the coefficient
matrix A

• A is not block diagonal even for Picard scheme

Many options available for solving systems AδV = R̂A (ongoing research)

• Preconditioned Krylov solvers based on a block-diagonal approximation PA of
A, with the inverse of PA approximated with multilevel methods

• Direct multilevel method acceleration of Krylov solvers

• FETI

Interfacing with external libraries (for example Hypre, Trilinos) is then usually
needed.
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Block diagonal approximation of A for Picard systems

P =
[

PA BT

0 Q

]
, with PA = A (blue) or PA ∼ diag(ε∆v1, ε∆v2, ε∆v3)
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