Laboratoire de Glaciologie et Géophysique de l'Environnement

First Elmer/Ice course

14-15 February 2008 - Updated 2013

Thomas ZWINGER ${ }^{(1)}$, Fabien GILLET-CHAULET ${ }^{(2)}$ and Olivier GAGLIARDINI ${ }^{(2)}$

Application to ISMIP HOM ${ }^{(3)}$ tests B and D Step by step !

(1) CSC-Scientific Computing Ltd., Espoo - Finland
(2) LGGE - Grenoble - France
(3) http://homepages.ulb.ac.be/~fpattyn/ismip/

Outline

Step 0 Start from a very simple test case. What are we solving? (Glen' s law, ...)
Step 1 Introducing periodic boundaries and unit systems:
Move to test ISMIP-HOM B020 (mesh, periodic BC)

Step 2 Visualization and Data:
-Add SaveData (SaveLine) solver to get ASCII output on the BC
-Add SaveData (SaveScalars) solver to get ASCII for CPU-time and volume
-Add ComputeDevStress solver to get the stress field
Step 3 Sliding law from user function or inline MATC-function:
-Move to test ISMIP-HOM D020
-Add ResultOutput solver to results additionally in VTU format
-Short Demo of ParaView

Step 4 Restart from Step 2: Move to prognostic ISMIP B020.

- Move from a steady to a transient simulation
- Free surface solver

Step 5 Move to Prognostic ISMIP D020.

Step 0

Create a My_ISMIP_Appli directory
Copy the directory Step0 in MY_ISMIP_Appli

- Make the mesh :> ElmerGrid 12 square.grd
- Run the test :> ElmerSolver ismip_stepo.sif
- Watch the results : > ElmerPost and open square \ismip_stepo.ep
- What are we solving?

Stokes:

$$
\begin{aligned}
& \operatorname{div} \boldsymbol{\sigma}+\rho \boldsymbol{g}=0 \\
& u_{i, i}=0
\end{aligned}
$$

Navier-Stokes with convection and acceleration terms neglected :

$$
\text { Flow Model }=\text { String Stokes }
$$

in the Stokes solver section

Step 0 - Glen's law and Elmer

In glaciology, you can find (at least) two definitions for Glen' s law:

$$
\begin{aligned}
D_{i j} & =\frac{B}{2} \tau_{e}^{n-1} S_{i j} \quad ; \quad S_{i j}=2 B^{-1 / n} \dot{\gamma}^{(1-n) / n} D_{i j} \\
D_{i j} & =A \tau_{e}^{n-1} S_{i j} \quad ; \quad S_{i j}=A^{-1 / n} I_{D_{2}}^{(1-n) / n} D_{i j} \quad \text { ISMIP notation }
\end{aligned}
$$

$$
\text { where } \quad I_{D_{2}}^{2}=D_{i j} D_{i j} / 2 \quad \text { and } \quad \dot{\gamma}^{2}=2 D_{i j} D_{i j}
$$

The power-law implemented in Elmer writes: $S_{i j}=2 \eta_{0} \dot{\gamma}^{m-1} D_{i j}$

$$
\begin{aligned}
& \eta_{0}=B^{-1 / n}=(2 A)^{-1 / n} \\
& m=1 / n \\
& \dot{\gamma}^{2} \geq \dot{\gamma}_{c}^{2}
\end{aligned}
$$

In Material Section:

```
Viscosity Model = String "power law"
Viscosity = Real \etao
Viscosity Exponent = Real m
Critical Shear Rate = Real }\mp@subsup{\dot{\gamma}}{c}{
```


Step 0 - Sketch of a Steady simulation

$$
\text { Geometry + Mesh } \longrightarrow \text { Degrees of freedom }
$$

$$
\epsilon_{L}<\epsilon_{N L}<\epsilon_{C}
$$

Step 0 - Numerical methods

In the NS Solver Section:
(see Chapters 3 and 4 of Elmer Solver Manual)

- Solution for the Linear System:

```
Linear System Solver = Direct
Linear System Direct Method = umfpack
```

- Non-Linear System :

```
Nonlinear System Max Iterations = 100
Picard Nonlinear System Convergence Tolerance = 1.0e-5 = \epsilon
Nonlinear System Newton After Iterations = 5
```

```
Nonlinear System Newton After Tolerance = 1.0e-02
```

Nonlinear System Newton After Tolerance = 1.0e-02
Nonlinear System Relaxation Factor = 1.00

```

Newton
- Coupled problem (not needed here in fact...):
```

Steady State Convergence Tolerance = Real 1.0e-3 = \epsilon}

```
- Stabilization of the Stokes equations:
```

Stabilization Method = String Bubbles (otheroptions:Stabilized, P2P1)

```


\section*{Step 0 - What are we solving?}
\[
\begin{array}{ll}
y \uparrow & \text { Boundary 3: } \\
& \text { - Stress free }
\end{array}
\]

Boundary 4
\[
u(0, y)=0
\]

\section*{Mesh:}
\(20 \times 20\) Q4 elements



\section*{Step 1 - Move to ISMIP-HOM B020}

What we have to solve :

Stress free
\[
z_{s}(x)=-x \tan \left(0.5^{\circ}\right)
\]

Periodic BC
\[
\begin{aligned}
& A=10^{-16} \mathrm{~Pa}^{-3} \mathrm{a}^{-1} \\
& \rho=910 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
\]

Periodic BC
\[
L=20 \times 10^{3} \mathrm{~m}
\]
\[
z_{b}(x)=z_{s}(x)-1000+500 \sin \left(\frac{2 \pi}{L} x\right)
\]

\section*{Step 1 - Changes from Step0}
- New directory, new names !
e.g.: square.grd -> rectangle.grd
- Make the mesh : use of the StructuredMeshMapper solver
- Right values for the different constants (which system of Units ?)
- Add the periodic boundary conditions


\section*{Step 1 - StructuredMeshMapper}
- Start from rectangular mesh \(L \times 1 \mathrm{~m}\) and use the solver StructuredMeshMapper to produce the ISMIP B geometry
\[
z_{s}(x)=-x \tan \left(0.5^{\circ}\right)
\]
- Add the solver StructuredMeshMapper

Solver 1
Equation = "MapCoordinate"
Procedure = "StructuredMeshMapper" "StructuredMeshMapper"
Active Coordinate \(=\) Integer 2
Mesh Velocity Variable \(=\) String "dSdt" (Not really needed in steady)
Mesh Update Variable \(=\) String "dS"
Mesh Velocity First Zero = Logical True
End

\section*{Step 1 - StructuredMeshMapper}

Declare mapping for Bottom Surface and Top Surface in Boundary Condition 1 and 2 , respectively:
```

\$Slope = 0.5 * pi / 180.0
\$L = 20000.0
! Bedrock
Boundary Condition 1
Target Boundaries = 1
Velocity 1 = Real 0.0e0
Velocity 2 = Real 0.0e0
Bottom Surface = Variable Coordinate 1
Real MATC "-tx*tan(Slope)-1000.0+500.0*sin(2.0*pi*tx/L)"
End
! Upper Surface
Boundary Condition 3
Target Boundaries = 3
Top Surface = Variable Coordinate 1
Real MATC "-tx*tan(Slope)"
End

```


\section*{Step 1 - Elmer and Units}

Elmer does not force any choice of units - they just have to be coherent.
Minimal influence on results, as the system matrix is normalized.
For the Stokes problem, one should give values for:
- the density: \(\rho \quad\left(=910 \mathrm{~kg} / \mathrm{m}^{3}\right)\)
- the gravity: \(g \quad\left(=9.81 \mathrm{~m} \mathrm{~s}^{-2}\right)\)
- the viscosity: \(\eta_{0}\)
\[
\left(\mathrm{Pa} \mathrm{~s}^{1 / n}\right) \quad\left(1 \mathrm{~Pa}=1 \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~m}^{-1}\right)
\]
\(\mathrm{kg}-\mathrm{m}-\mathrm{s}[\mathrm{SI}]\) : velocity in \(\mathrm{m} / \mathrm{s}\) and time-step in seconds
\(\mathrm{kg}-\mathrm{m}-\mathrm{a}\) : velocity in \(\mathrm{m} / \mathrm{a}\) and time-step in years
 \(1 \mathrm{a}=31557600 \mathrm{~s}\)
\(\mathrm{MPa}-\mathrm{m}-\mathrm{a}\) : velocity in \(\mathrm{m} / \mathrm{a}\) and Stress in MPa

(What I will use in the following)

\section*{Step 1 - Value of the ISMIP constants}

For ISMIP tests A-D, the value for the constants are
- the density: \(\quad \rho=910 \mathrm{~kg} / \mathrm{m}^{3}\)
- the gravity: \(g=9.81 \mathrm{~m} \mathrm{~s}^{-2}\)
- the fluidity: \(A=10^{-16} \mathrm{~Pa}^{-3} \mathrm{a}^{-1}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & USI kg - m - s & kg - m & & \multicolumn{2}{|l|}{MPa - m - a} \\
\hline \(\mathrm{g}=\) & \(9.81 \mathrm{~m} / \mathrm{s}^{2}\) & \(9.7692 \mathrm{E}+15\) & \(\mathrm{m} / \mathrm{a}^{2}\) & \(9.7692 \mathrm{E}+15\) & \(\mathrm{m} / \mathrm{a}^{2}\) \\
\hline \(\rho=\) & \(910 \mathrm{~kg} / \mathrm{m}^{3}\) & 910 & \(\mathrm{kg} / \mathrm{m}^{3}\) & \(9.1380 \mathrm{E}-19\) & MPa m \({ }^{-2} \mathrm{a}^{2}\) \\
\hline A = & \(3.1689 \mathrm{E}-24 \mathrm{~kg}^{-3} \mathrm{~m}^{3} \mathrm{~s}^{5}\) & \(1.0126 \mathrm{E}-61\) & \(\mathrm{kg}^{-3} \mathrm{~m}^{3} \mathrm{a}^{5}\) & 100 & \(\mathrm{MPa}^{-3} \mathrm{a}^{-1}\) \\
\hline \(\eta=\) & \(5.4037 \mathrm{E}+07 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-5 / 3}\) & \(1.7029 \mathrm{E}+20\) & \(\mathrm{kg} \mathrm{m}^{-1} \mathrm{a}^{-5 / 3}\) & 0.1710 & MPa \({ }^{1 / 3}\) \\
\hline
\end{tabular}
\[
\begin{aligned}
& \eta_{0}=B^{-1 / n}=(2 A)^{-1 / n} \\
& m=1 / n \\
& \dot{\gamma}^{2} \geq \dot{\gamma}_{c}^{2}
\end{aligned}
\]

\section*{Step 1 - Value of the ISMIP constants}

One can use MATC coding to get the correct value of the parameters
```

Syearinsec = 365.25*24*60*60
Srhoi = 900.0/(1.0e6*yearinsec^2)
Sgravity = -9.81*yearinsec^2
5n=3.0
Seta = (2.0*100.0)^(-1.0/n)
!!!
Body Force 1
Flow BodyForce 1 = Real 0.0
Flow BodyForce 2 = Real Sgravity
End
!!!
Material 1
Density = Real Srhoi
viscosity Mode1 = String "power law"
viscosity = Real Seta
Viscosity Exponent = Real \$1.0/n
Critical Shear Rate = Real 1.0e-10
End

```


\section*{Step 1 - Periodic boundary conditions}

Translation for B4 to transform into B2


Declare at the top of the sif:
\(\$ L=20.0 e 3\)

Boundary Condition 2
Target Boundaries \(=2\)
Periodic \(B C=4\)
Periodic BC Translate (2) = Real \$L 0.0
Periodic BC Velocity 1 = Logical True
Periodic BC Velocity \(2=\) Logical True
Periodic BC Pressure \(=\) Logical True
End
Boundary Condition 4
Target Boundaries \(=4\)
End

\section*{Step 2 - Add ComputeDevStress}

Objective: compute the stress field as \(\int_{V} S_{i j} \Phi \mathrm{~d} V=2 \int_{V} \eta D_{i j} \Phi \mathrm{~d} V\) where \(D_{i j}\) and \(\eta\) are calculated from the nodal velocities using the derivative of the basis functions
- Add a Solver
```

Solver 3
Equation = Sij
Variable = -nooutput "Sij"
Variable DOFs = 1
Exported Variable 1 = Stress[Sxx:1 Syy:1 Szz:1 Sxy:1]
Exported Variable 1 DOFs = 4
Stress Variable Name = String "Stress"
Procedure = "ElmerIceSolvers" "ComputeDevStress"
Flow Solver Name = String "Flow Solution"
Linear System Solver = Direct
Linear System Direct Method = umfpack
End

```
- Add in the material section:

Cauchy = Logical False

\section*{Step 2 - Add SaveData Solver (SaveLine)}

Objective: save the variables on the top surface (ASCII matrix file)
- Add a new solver
```

Solver 4
Exec Solver = After All
Procedure = File "SaveData" "SaveLine"
Filename = "ismip_surface.dat"
File Append = Logical False
End

```
- Tell in which BC you want to save the data
```

Boundary Condition 3
Target Boundaries = 3
Save Line = Logical True
End

```
- Ordering of the variables: see file ismip_surface.dat. names


\section*{Step 2 - Add SaveData Solver (SaveLine)}

SaveLine can also be used to save data at a 'drilling site' (a line which is not a boundary). Here, the data are saved at \(x=10 \mathrm{~km}\).
- Change the solver section
```

Solver 4
Exec Solver = After All
Procedure = File "SaveData" "SaveLine"
Filename = "ismip_drilling.dat"
Polyline Coordinates(2,2) = Real \$ (0.5*L) -1000. (0.5*L) 0.0
File Append = Logical False !Overwrites existing files
End

```
- And don't forget to comment the Save line = Logical True in BC3


\section*{Step 2 - Add SaveScalars}

SaveScalars allows to save scalars and derived quantities. Here, we will save:

1/ the volume of the domain (surface),
2 / the maximum value of the absolute horizontal velocity,
3 / the flux on the 3 boundaries 2,3 and 4 .
4/ the CPU time,
5/ the CPU memory

\section*{Step 2 - Add SaveScalars}
-Add a new solver
```

Solver 5
Exec Solver = After
Procedure = "SaveData" "SaveScalars"
Filename = "ismip_scalars.dat"
File Append = Logical True
Variable 1 = String "flow solution"
Operator 1 = String "Volume"
Variable 2 = String "Velocity 1"
Operator 2 = String "max abs"
Variable 3 = String "flow solution"
Operator 3 = String "Convective flux"
Operator 4 = String "cpu time"
Operator 5 = String "cpu memory"
End

```
- Tell at which boundaries you want to save the flux

Flux Integrate \(=\) Logical True


\section*{Step 3 - Add ResultOutput}
- ResultOutput allows to export the result in vtu (Visulation Toolkit unstructured grid) format and use Paraview for post-treatment
```

Solver 6
Exec Solver = After TimeStep
Exec Interval = 1
Equation = "result output"
Procedure = "ResultOutputSolve" "ResultOutputSolver"
Output File Name = String "ismip\$Step".vtu"
Output Format = String vtu
End

```
- For all these added solvers, modify the Equation section:

Equation 1
```

Active Solvers(6) = 1 2 3 4 5 6

```

End


\section*{Step 3 - Remark on VTU output}
- If one is not interested in the legacy format for ElmerPost, but only in VTU:
- In Simulation just exchange the file suffix from
.ep to .vtu
- Post File = "name.vtu"
- This runs the ResultOutputSolver instead of writing ElmerPost-output
- No selection on output variables can be made (everything will be dumped)

\section*{Step 3 - Move to ISMIP-HOM D020}

Changes from B020:
- geometry of domain
\[
\left\{\begin{array}{l}
z_{s}(x, y)=-x \tan \left(0.1^{\circ}\right) \\
z_{b}(x, y)=z_{s}(x, y)-1000
\end{array}\right.
\]

modify the Top Surface and Bottom Surface variables
- boundary condition at the bedrock interface
\[
\left\{\begin{array}{l}
\tau_{n t}=\beta^{2} u_{t} \quad \text { with } \beta^{2}(x)=1000+1000 \sin \left(\frac{2 \pi}{L} x\right) \\
u_{n}=\boldsymbol{u} \cdot \boldsymbol{n}=0 \\
\longrightarrow \text { modify Boundary Condition } 1
\end{array} \quad \text { in }\left[\mathrm{Pa} \mathrm{a} \mathrm{~m}^{-1}\right]!\text { ! } \quad\right. \text {. }
\]


\section*{Step 3 - Move to ISMIP-HOM D020}

Friction law in Elmer:
\[
\begin{gathered}
C_{i} u_{i}=\sigma_{i j} n_{j}(i=1,2) \\
\Longrightarrow C_{t} u_{t}=\sigma_{n t} ; C_{n} u_{n}=\sigma_{n n}
\end{gathered}
\]
where \(\boldsymbol{n}\) is the surface normal vector


Modification of the Boundary Condition 1:
- First Solution: MATC definition of Ct

Boundary Condition 1
Target Boundaries \(=1\)
Flow Force \(B C=\) Logical True
Normal-Tangential Velocity = Logical True
Stress condition defined in a normal-tangential coordinate system

Velocity \(1=\) Real \(0.0 e 0\)
\} \(u_{n}=0\)
Slip Coefficient \(2=\) Variable coordinate 1
Real MATC "1.0e-3* (1.0 + sin (2.0*pi* tx / L ))
End
```

$C_{t}=\ldots$
in $\left[\mathrm{MPa}\right.$ a $\left.\mathrm{m}^{-1}\right]$!

```


\section*{Step 3 - Move to ISMIP-HOM D020}
- Second Solution: User Function to define Ct
```

Boundary Condition 1
Slip Coefficient 2 = Variable coordinate 1
Real Procedure "./ISMIP_D" "Sliding"
End

```
where Sliding is a User Function defined in the file ISMIP_D.f90 (see next slide)

Compilation:
> elmerf90 ISMIP_D.f90 -o ISMIP_D


\section*{Step 3 - Move to ISMIP-HOM D020}
```

FUNCTION Sliding (Model, nodenumber, x) RESULT(C)
USE Types
IMPLICIT NONE
TYPE (Model_t) :: Model
INTEGER :: nodenumber, i
REAL (KIND=dp) :: x, C, L
LOGICAL :: FirstTime=.True.
SAVE FirstTime, L
IF (FirstTime) THEN
FirstTime=.False.
L = MAXVAL(Model % Nodes % x) !the highest occurring x-coord
END IF
x = Model % Nodes % x(nodenumber)
C = 1000.0d-06*(1.0_dp + SIN(2.0_dp * PI * x/ L))

```
```

 ! in MPa a /m
    ```
                        ! in MPa a /m
END FUNCTION Sliding
```


Step 3 - Remark on VTU output

- If one is not interested in the legacy format for ElmerPost, but only in VTU:
- In Simulation just exchange the file suffix from
.ep to .vtu
- Post File = "name.vtu"
- This runs the ResultOutputSolver instead of writing ElmerPost-output
- No selection on output variables can be made (everything will be dumped)

Step 3 - ParaView

- Launch ParaView:

- > paraview
- Load the result file ismip3.vtu0001.vtu
- "ice-core" in ParaView:
- Use filter "PlotOverLine"
- Set Point1 = (5000,-1000,0); Point2=(5000,0,0)

Step 4 - Move to prognostic B020

Move from a diagnostic to a prognostic simulations:

- Steady to transient
- Add the free surface solver

$$
\frac{\partial z_{s}}{\partial t}+u_{x} \frac{\partial z_{s}}{\partial x}-u_{z}=a
$$

Step 4 - Steady to transient

The simulation Section has to be modified:

```
Simulation Type = Transient
Timestepping Method = "bdf" \longrightarrow Backward Differences Formula
BDF Order = 1
Output Intervals = 1
B BDF Order 1 = Backward Euler
\longrightarrow ~ I / O ~ i n t e r v a l s ~ i n ~ . e p / . v t u ~ f i l e
Timestep Intervals = 200
Timestep Sizes = 1.0
Steady State Min Iterations = 1
Steady State Max Iterations = 10 \longrightarrow To control the "implicity" of the solution
                                    over one time step
                                    (see example bellow).
```


30

Step 4 - Sketch of a transient simulation

Geometry + Mesh \longrightarrow Degrees of freedom

$$
t=t+\mathrm{d} t
$$

$$
\epsilon_{L}<\epsilon_{N L}<\epsilon_{C}
$$

Step 4 - Free surface Solver

The free surface solver only applies to the boundary 3 (top surface) Define a 2nd (lower dimensional) body on boundary 3.

```
Body 2
    Equation = 2
    Body Force = 2
    Material = 1
    Initial Condition = 2
End
```

where Equation 2, Body Force 2 and Initial Condition 2 are defined for the free surface equation.

Tell in BC3 that this is the body 2:

```
Boundary Condition 3
    Target Boundaries = 3
    !!! this BC is equal to body no. 2 !!!
    Body Id = 2
    End
```


Step 4 - Free surface Solver

Add the Free Surface Solver:

```
Solver 2
    Equation = "Free Surface"
    Variable = String Zs
    Variable DOFs = 1
    Exported Variable 1 = String "Zs Residual"
    Exported Variable 1 DOFs = 1
```

 Procedure = "FreeSurfaceSolver" "FreeSurfaceSolver"
 Before Linsolve = "EliminateDirichlet" "EliminateDirichlet" ! Not in parallel
 Linear System Solver = Iterative
 Linear System Max Iterations = 1500
 Linear System Iterative Method = BiCGStab
 Linear System Preconditioning = ILUO
 Linear System Convergence Tolerance = Real 1.0e-5
 Linear System Abort Not Converged = False
 Linear System Residual Output = 1
 Steady State Convergence Tolerance = 1.0e-03
 Relaxation factor = Real 1.0
 Stabilization Method = Bubbles
 End

Step 4 - Free surface Solver

Body Force 2:

```
Body Force 2 ! The Cartesian components
    Zs Accumulation Flux 1 = Real 0.0e0
    Zs Accumulation Flux 2 = Real 0.0e0
End
```

Equation 2:

```
Equation 2
    Active Solvers(1) = 2
    Flow Solution Name = String "Flow Solution"
    Convection = String Computed
End
```

Initial Condition 2: give $z_{s}(x, 0)$

```
Initial Condition 2
    Zs = Variable Coordinate 1
        Real MATC "-tx*tan(Slope)"
End
```


Step 4 - StructuredMeshMapper

- The Top Surface variable is now equal to the variable zs

```
Solver 1
    Equation = "MapCoordinate"
    Procedure = "StructuredMeshMapper" "StructuredMeshMapper"
    Active Coordinate = Integer 2
    Mesh Velocity Variable = String "dSdt"
    Mesh Update Variable = String "dS"
    Mesh Velocity First Zero = Logical True
    Top Surface Variable = String "Zs"
    Dot Product Tolerance = Real 1.0e-3
End
```



```
Top Surface Variable = String "Zs"
Dot Product Tolerance \(=\) Real 1.0e-3
End
```



```
-And delete in the top surface BC the definition of Top Surface.
```


Step 4 - Results !

Animation made with ParaView

Step 4 - Results !

Comparison of the initial and steady surface of the prognostic run

Step 4 - better results !

Turn the mesh so that $\mathrm{zs}=0$ (turn the gravity vector also !) Force zs to be periodic

See Step4_hori

Step 5 - Move to prognostic D020

Merge Step 3 and Step 4 and it should work!

