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Rheology of Ice(s)
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 The Physics
 - Ice(s) on Earth
 - Important internal variables

 Rheological laws 
 - Glen's flow law 
 - Anisotropic laws (GOLF and CAFFE)
 - A law for the firn/snow
 - Associated evolution equations (fabric, density)
          - Damage

 Implementation in Elmer/Ice
 - AIFlow Solver and Fabric Solver
 - Porous Solver
          - User Function USF_Damage
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Flowing ice(s) on the Earth
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Greenland 

Antarctica 

Glaciers (~220 000)
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Central part of ice-sheets
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Very very slow flow 

Large amplitude of  temperature

Strain-induced and Recrystallization 
fabrics
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Margin of ice-sheets 
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Faster flow 

Higher temperature

Recrystallization fabrics

Damaged ice (crevasses,calving)
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Glaciers
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Faster flow 

Temperate ice 

Stress-induced fabrics

Damaged ice (crevasses, seracs)

Slow flow 

Lower temperature

Large part composed by snow/firn
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Ice crystal and Fabric
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behave like a deck of cards !!
basal plane

c- axis

c Hexagonal symmetry

One of the most anisotropic natural material 

Fabric
Polycrystalline ice

Ice crystal c

Anisotropy function of the fabric
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Ice monocrystal viscoplastic behaviour

Ice crystal deforms mainly by 
dislocation glide in the basal planes 

Shearing parallel to basal plane is almost 1000 time faster 
than compression (⊥ ou // p. b.) or shearing in the basal plane

  behave like a deck of cards 

Ice is one of the most anisotropic natural material

c- axis

basal plane

The viscoplastic deformation is due to the dislocation glide

b
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Fabric of polycrystalline ice

c-axes fabric

c-axes

Thin section

One color =
one grain =
one orientation

Schmidt diagram

Under cross-polarized light

describe the fabric 
9
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Observed ice fabric patterns
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VostokByrdVertical In a vertical plane

Depends on the strain history undergone by the polycrystal

Compression and/or
Simple shear Tension
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Anisotropic polycrystalline ice
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7 Law Dome, Antarctica,  
0,135 MPa,  -7°C

VostokByrd

Law Dome

Single maximum fabric is about 10 time easier to shear than isotropic ice
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Damaged ice : a continuum mechanic approach
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Objective:
• quantify the degradation of mechanical properties resulting from the nucleation 
of internal defects such as micro-cracks or voids

A continuum damage mechanics model:
• internal defects must be small compared to the representative volume element 
over which damage is considered
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Damaged ice : a continuum mechanic approach
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Objective:
• quantify the degradation of mechanical properties resulting from the nucleation 
of internal defects such as micro-cracks or voids

A continuum damage mechanics model:
• internal defects must be small compared to the representative volume element 
over which damage is considered

Here, we use damage mechanics to deal with the effect of a field of
crevasses on ice flow and not to describe the propagationof an 
individual crevasse.
The Damage state variable D represents the degradation of the 
mechanichal properties and varies from 1 (undamaged) to 0 (fully 
dammaged)
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The behaviour of each piece of ice is unique ! 

Temperature

Dust content

Size of the crystals (?)
fabric

Damage
Water content

Rheological properties of ice(s)

Density
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The behaviour of each piece of ice is unique ! 

Temperature

Dust content

Size of the crystals (?)
fabric

Damage
Water content

Need a law dedicated to each problem

Rheological properties of ice(s)

Density
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Rheology of Ice(s)
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 The Physics
 - Ice(s) on Earth
 - Important internal variables

 Rheological laws 
 - Glen's flow law 
 - Anisotropic laws (GOLF and CAFFE)
 - A law for the firn/snow
 - Associated evolution equations (fabric, density)
          - Damage

 Implementation in Elmer/Ice
 - AIFlow Solver and Fabric Solver
 - Porous Solver
          - User Function USF_Damage
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Isotropic Ice (Glen's law)
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Isotropic ice : Norton-Hoff type law

where 

�2e = SijSij/2

A(T
0
) = A(T0) exp

Q
R
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Arrhenius law for temperature dependency

T
0
= T � Tm, with Tm = 273.15 + 9.8⇥ 10

�8pi (Clausius-Clapeyron)
Q activation energy

R = 8.314 universal gaz constant
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Isotropic Ice (Glen's law)
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A(T
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) = A(T0) exp
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Arrhenius law for temperature dependency

Recommended values by Cuffey and Patterson [2010]
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Description of the fabric
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Fabric
Polycrystalline ice

Ice crystal c

Orientation tensors: Yes!

Discrete: two many variables
(Castelnau et al., 1996) 

a(2) =< c⌦ c >
a(4) =< c⌦ c⌦ c⌦ c >

a(2)1 + a(2)2 + a(2)3 = 1

a(2)1 , a(2)2 , oe1, oe2,oe3

Only 5 variables needed! 
(The 2 eigenvalues and 3 eigenvectors of the second order orientation tensor)
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Examples of fabric

D
ep

th
 [m

]
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Orientation tensors

uni-axial
plane

isotropic bi-axial isotropic tri-axial

 The knowledge of           is not sufficient

         and           are sufficient
a(2) =< c⌦ c >
a(4) =< c⌦ c⌦ c⌦ c >

a(2) =< c⌦ c >
a(4) =< c⌦ c⌦ c⌦ c >

a(2) =< c⌦ c >
a(4) =< c⌦ c⌦ c⌦ c >

a(2) =< c⌦ c >
a(4) =< c⌦ c⌦ c⌦ c >

(Wang et al, 2003 ; Durand et al., 2007) 

Dome C (Antarctica)

a(2)i
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Anisotropic Ice
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Two dedicated laws in Elmer/Ice: 

Name GOLF CAFFE

Anisotropy Orthotropic Enhancement factor

Collinear No Yes

Calibration Tabulated using a micro-
macro model

From experimental results

Easiness dedicated solver (AIFlow) Navier-Stokes Solver + 
User Function 

GOLF: General Orthotropic Flow Law [Gillet-Chaulet et al., 2005, 2006 ; Durand et al., 2009 ; Ma et al., 2010]
CAFFE: Continuum-mechanical, Anisotropic Flow model based on an anisotropic Flow Enhancement factor [Placidi and Hutter, 2006 ; 
Seddik et al., 2008, 2009 ; Placidi et al., 2010]  
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Anisotropic Ice
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3X

r=1

h
�rtr(M r ·D)MD

r + �r+3(D ·M r +M r ·D)D
i
= 2A⇥n�1

e �

�
r

= �
r

(a(2)
), 6 relative viscosities function of the fabric
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, 3 structure tensors from the 3 principal axes

GOLF:

CAFFE:

D = 2EA�n�1
e ⌧

E = E(a(2)
), 1 scalar enhancement factor function of the fabric
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Fabric evolution

22

For both laws, need an equation describing the fabric evolution, 
i.e. the evolution of a(2) =< c⌦ c >

a(4) =< c⌦ c⌦ c⌦ c >

⇥a(2)

⇥t
+ g(S,D,a(2),a(4)) + �(I � a(2)) = 0

[Gödert, 2003 ; Gillet-Chaulet et al., 2006]

Need a closure approximation

Gödert, 2003

recrystallization

 Only Macroscopic quantities

a(4) = f(a(2))
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Rheology of snow/firn
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Snow/firn = Ice + Air
 - Compressible
 - Viscosity function of the density

microscopic 
stress

Macroscopic 
stress

Homogeneous 
Equivalent Material

Ice

[Duva and Crow, 1994]

Air



F. GILLET-CHAULET –  Advanced Elmer/Ice workshop 2015

Observation of density

2425

DYE-3, Greenland (From Niels Bohr Institute) Dome du Gouter, French Alps

Relative density

D
ep

th
 [m

]



F. GILLET-CHAULET –  Advanced Elmer/Ice workshop 2015

Rheology of snow/firn

Stokes compressible: velocities, isotropic pressure

Snow/firn law: 

Relative density:

div� + ⇢g = 0

25

with

[Gagliardini and Meyssonnier, 1997]

D = �/�i

a = a(D), b = b(D)

a = a(D), b = b(D)

d �
d t

+ div �u = 0
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Damaged ice : a continuum mechanic approach
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We define an effective deviatoric part of the Cauchy stress tensor as:

Strain is affected only by this effective stress:

By identification with Glen’s law, the enhencement factor is a function of damage:

Damage is a property of the material at the mesoscale. It is therefore advected by 
the ice flow, and evolves over time depending on the stress field:

The right-hand side represents a damage source term that can be written as a function 
of a damage enhencement factor and a damage criterion:
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Damaged ice : a continuum mechanic approach
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Here, to describe crevasse opening under pure tension, we use a pure-tensile 
criterion, described as a function of the maximum principal Cauchy stress:
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Rheology of Ice(s)

28

 The Physics
 - Ice(s) on Earth
 - Important internal variables

 Rheological laws 
 - Glen's flow law 
 - Anisotropic laws (GOLF and CAFFE)
 - A law for the firn/snow
 - Associated evolution equations (fabric, density)

 Implementation in Elmer/Ice
 - AIFlow Solver and Fabric Solver
 - Porous Solver
          - User Function USF_Damage
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Glen’s law and Elmer
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Material 1
! Glen's flow law 
  Viscosity Model = String "Glen"
  Viscosity = Real -9999 ! To avoid warning output 
  Glen Exponent = Real 3.0
  Critical Shear Rate = Real 1.0e-10
  ! gives a fixed value in MPa^-3a^-1
  Set Arrhenius Factor = Logical True
  Arrhenius Factor = Real $1.0E-16 * 1.0E18
  Glen Enhancement Factor = Real 1.0
End

Material 1
  Viscosity Model = String "Glen"
! Viscosity has to be set to a dummy value
! to avoid warning output from Elmer
  Viscosity = Real -9999
  Glen Exponent = Real 3.0
  Critical Shear Rate = Real 1.0e-10
! Rate factors (Paterson value in MPa^-3a^-1)
  Rate Factor 1 = Real 1.258e13  
  Rate Factor 2 = Real 6.046e28
! these are in SI units - no problem, as long as
! the gas constant also is 
  Activation Energy 1 = Real 60e3
  Activation Energy 2 = Real 139e3  
  Glen Enhancement Factor = Real 1.0
! the variable taken to evaluate the Arrhenius law
! in general this should be the temperature relative
! to pressure melting point. The suggestion below plugs
! in the correct value obtained with TemperateIceSolver
  Temperature Field Variable = String "Temp Homologous"
! the temperature to switch between the 
! two regimes in the flow law
  Limit Temperature = Real -10.0
! In case there is no temperature variable
  !Constant Temperature = Real -10.0
End

A(T
0
) = A(T0) exp

Q
R

0

@ 1

T0
�

1

T
0

1

A

Build-in Glen’s Flaw Low:

Elmer has no restriction on the units 
system

• Choose the most appropriate units 
for your silmulations
• Be consistent !!
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Anisotropy: related equations 

Stokes Equations

• Inputs
 Fabric 
 Temperature
 Geometry 

• Outputs

 Velocities and isotropic pressure
 Stresses, strain-rates

• Inputs :   Velocities, stresses,
     strain-rates, rotation rate

Isotropic  ice at the surface

• Outputs :  Fabric field

 Free surface elevation • Inputs Velocities

 Velocities

+ behaviour (GOLF, CAFFE)

 Fabric

• Outputs   Surface elevation

Fully coupled

• BC :

div� + ⇢g = 0

div ⇢u = 0

30

⇥a(2)

⇥t
+ g(S,D,a(2),a(4)) + �(I � a(2)) = 0
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AIFlow Solver

31

Add the AIFlow solver:

Solver 1
  Equation = AIFlow
  Variable = AIFlow
  Variable DOFs = 3                        ! 3 for 2D -- 4 for 3D

  Exported Variable 1 = Temperature        ! Define Temperature Mandatory!!
  Exported Variable 1 DOFS = Integer 1

  Exported Variable 2 = Fabric             ! Define Fabric Variable
  Exported Variable 2 DOFS = Integer 5    ! Mandatory if Isotropic=False

  Exported Variable 3 =  StrainRate        ! Compute SR
  Exported Variable 3 DOFS = Integer 4     ! 4 in 2D  6 in 3D (11,22,33,12,23,31)

  Exported Variable 4 =  DeviatoricStress  ! Compute Stresses
  Exported Variable 4 DOFS = Integer 4     ! 4 in 2D  6 in 3D  (11,22,33,12,23,31)

  Exported Variable 4 =  Spin              ! Compute Spin
  Exported Variable 4 DOFS = Integer 1     ! 1 in 2D  3 in 3D (12,23,31)

  Procedure = "ElmerIceSolvers" "AIFlowSolver_nlS2"
  !Procedure = "ElmerIceSolvers" "AIFlowSolver_nlD2"
End

3X

r=1

h
�rtr(M r ·D)MD

r + �r+3(D ·M r +M r ·D)D
i
= 2A⇥n�1

e �
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AIFlow Solver
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In the Body Force section:
  AIFlow Force 2 = Real -0.00899  ! body force, i.e. gravity * density

In the Material section:
  Powerlaw Exponent = Real 3.0
  Min Second Invariant = Real 1.0e-10  ! Min value for the second invariant of strain-rates
  Reference Temperature = Real -10.0   ! T0 (Celsius)!
  Fluidity Parameter = Real 20.        ! Bn(T0) = 2 x A(T0)
  Limit Temperature = Real -5.0        ! TL  (Celsius)!
  Activation Energy 1 = Real 7.8e04    ! Joule/mol for T<TL
  Activation Energy 2 = Real 7.8e04    ! Joule/mol for T>TL

  Viscosity File = FILE "040010010.Va"   !Contains the tabulated relative viscosities
  Isotropic = Logical False   ! If True, no need of Fabric variable

In the Initial Condition section:
  Fabric 1 = Real 0.33333333333333 !a2_11
  Fabric 2 = Real 0.33333333333333 !a2_22
  Fabric 3 = Real 0.               !a2_12
  Fabric 4 = Real 0.               !a2_23
  Fabric 5 = Real 0.               !a2_13

  AIFlow 1 = Real 0.0              ! u_1
  AIFlow 2 = Real 0.0              ! u_2
  AIFlow 3 = Real 0.0              ! p for 2D u_3 for 3D
  AIFlow 4 = Real 0.0              ! only for 3D = p

3X

r=1

h
�rtr(M r ·D)MD

r + �r+3(D ·M r +M r ·D)D
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= 2A⇥n�1

e �
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AIFlow Solver
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In Boundary Condition section:
  
Dirichlet condition for velocity:
  AIFlow 1 = Real 0.
  AIFlow 2 = Real 0.

Neumann condition for AIFlow:
  Normal force = Real 0.     ! a pressure along the normal of the surface
  Force 1 = Real 0.          ! stress along x (Sxn, with n the surface normal)
  Force 2 = Real 0.          ! stress along y (Syn)
  Force 3 = Real 0.          ! stress along z (Szn)
  AIFlow Slip Coeff 1 = Real 0.1    ! Slip coefficient in direction 1

Normal-Tangential boundary condition (for Dirichlet and Neumann):
   Normal-Tangential AIFlow = Logical True 

3X

r=1

h
�rtr(M r ·D)MD
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CAFFE User Function

34

In Material Section:

 Viscosity Model = String "power law"
 Viscosity Exponent = Real MATC "1.0/3.0"

 Viscosity =  Variable Temp
         Real Procedure "./CaffeFlow" "caffeGetViscosity"

  Activation Energies (2) = Real 6.0E04 1.39E05
  Arrhenius Factors (2) = Real 3.985E-13  1.916E03
  Enhancement Factor = Real 1.0
  Limit Temperature = Real -10.0 ! switching between the two values
  Temp Upper Limit = Variable Pressure
         Real Procedure  "IceFlowProperties" "getPressureMeltingPoint"

  Anisotropic Enhancement factor = Real 10.0
  Critical Enhancement factor = Real 0.0001

Contact: Hakime Seddik (hakime@pop.lowtem.hokudai.ac.jp)

D = 2EA�n�1
e ⌧

E = E(a(2)
), 1 scalar enhancement factor function of the fabric
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Fabric Solver

35

Add the Fabric solver:

Solver 2
  Equation = Fabric
  Variable = -nooutput Compfab    ! dumy variable (Fabric variable exported from AIFlow)
  Variable DOFs = 1               ! FabricSolver compute each variable independently, Picard Type iterations

  Procedure = "ElmerIceSolvers" "FabricSolver"
  Discontinuous Galerkin = Logical True
End

In the Material section:
  Interaction Parameter = Real 0. ! ! 0 => Fabric Evolution function of Strain-rates 
                   ! 1=> Fabric Evolution function of dev stresses
                                     ! If not defined set to the default value given in Viscosity File
  Diffusion Parameter = Real 0.   ! ! Diffusion term. By default set to 0 if not defined

In the Boundary Condition section:
Only Dirichlet BC for Fabric (required for inflow boundary condition, no condition for outflow)
  Fabric 1 = Real $1./3.  !a2_11
 Fabric 2 = Real $1./3.  !a2_22
 Fabric 3 = Real 0.          !a2_12
 Fabric 4 = Real 0.          !a2_23
 Fabric 5 = Real 0.          !a2_13

Here, isotropic fabric (as for the upper surface)

⇥a(2)

⇥t
+ g(S,D,a(2),a(4)) + �(I � a(2)) = 0
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Snow/firn: related equations 

Stokes Equations

• Inputs
 Density 
 Temperature
 Geometry 

• Outputs

 Velocities and isotropic pressure
 Stresses, strain-rates

• Inputs :   Velocities, stresses,
     strain-rates, rotation rate

snow density at the upper 
surface

• Outputs :  Density field

 Free surface elevation • Inputs Velocities

 Velocities

+ behaviour (Snow/Firn)

  Density 

• Outputs   Surface elevation

Fully coupled

• BC :

div� + ⇢g = 0

div ⇢u = 0

37

d �
d t

+ div �u = 0
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Porous Solver

38

! this is the compressible Stokes solver
!----------------------------------------
Solver 1
  Equation = String "PorousFlow"
  Procedure = "ElmerIceSolvers" "PorousSolver"
  Variable = "Porous"
  Variable DOFs = 4 ! 4 in 3D (u,v,w,p) ; 3 in 2D (u,v,p)
  
  Optimize Bandwidth = False
! Use p elements
! Element = "p:1 b:4"
! Stablization Method = String pBubbles

 ! Exported Variable 1 = String "Relative Density"
 ! Exported variable 1 DOFs = Integer 1

! switch that in for post-processing issues only
   Exported Variable 2 = String "StrainRate"
   Exported variable 2 DOFs = Integer 6 ! 4 in 2D, 6 in 3D
   Exported Variable 3 = String "DeviatoricStress"
   Exported variable 3 DOFs = Integer 6 ! 4 in 2D, 6 in 3D
   Exported Variable 4 = String "Spin"
   Exported variable 4 DOFs = Integer 3 ! 1 in 2D, 3 in 3D

  Linear System Solver = 'Direct'
! Only Picard linearization available for this solver
  Nonlinear System Convergence Tolerance = 1.0E-05
  Nonlinear System Max Iterations = 50

  Steady State Convergence Tolerance = 1.0E-03
End

! Gravity force
Body Force 1
  Porous Force 1 = Real 0.0E00
  Porous Force 2 = Real 0.0E00
  Porous Force 3 = Real $gravity*rhoi 
End

Material 1
  Powerlaw Exponent = Real $n
  Min Second Invariant = Real 1.0E-10
  Fluidity Parameter = Real $B  ! MPa^{-3}a^{-1} 
! Density as a function of relative density
  Density = Variable Relative Density
        Real MATC "tx*rhoi"
End

! Neumann type boundary condition
Boundary Condition 1
    Force 3 = Real -0.01
End
! or
Boundary Condition 1
  Normal Force = Real -0.01
End

! Dirichlet / Newton Boundary condition
! here: zero normal velocity and sliding
Boundary Condition 2
  Target Boundaries  = 2
  Normal-tangential Porous = True
  Porous 1 = Real 0.0
  Porous Slip Coeff 2 = Real 0.1
  Porous Slip Coeff 3 = Real 0.1
End
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Density Solver

39

d �
d t

+ div �u = 0

This is a generic Advection-Reaction equation 
=> Use the Elmer AdvectionReaction Solver 

Solver 8
  Equation = "AdvReact"
  Exec Solver = "After Timestep"
  Procedure = File "AdvectionReaction" "AdvectionReactionSolver"
  ! this is the DG variable, which is not part of the output
  Variable =  -nooutput "DGdens"
  ! this tells that the solver is run on DG mesh
  Discontinuous Galerkin = Logical True
  ! the solver can account for upper and lower limits of the variable
  ! imposed by formulation of an variational inequality (VI)
  ! next line switches the VI to be accounted for
  Limit Solution = Logical True

  Linear System Solver = Iterative
  Linear System Iterative Method = BiCGStab
  Linear System Max Iterations  = 1000
  Linear System Preconditioning = ILU1
  Linear System Convergence Tolerance = 1.0e-06
  ! Variational inequality makes it a non-linear problem
  Nonlinear System Max Iterations = 40
  Nonlinear System Min Iterations = 2
  Nonlinear System Convergence Tolerance = 1.0e-04

  ! This is the variable that is used to interpolate
  ! the DG solution to the regular FEM mesh in order
  ! to get a correct output
  Exported Variable 1 = Relative Density
  Exported Variable 1 DOFS = 1
End

Body Force 1
 ...
  DGDens Source = Real 0.0 
End

Material 1
 ..
 ! Relative density must stay < 1
 DGDens Upper Limit = Real 1.0

 ! a minimum relative density is recommended for the Porous solver 
 DGDens Lower Limit = Real 0.3

 !Reaction rate is equal to zero
 DGDens Gamma = Real 0.0
End

Initial Condition 1
  ...
  DGDens = Real 0.4
End

! only Dirichlet BC can be set
! the solver automatically uses this
! condition only on inflow boundaries
! outflow boundaries are ignored
Boundary Condition 2
  Name = "surf"
  Target Boundaries = 2
  Body ID = 2
  ...
  ! relative density on the upper surface
  DGDens = Real 0.4
End
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The snow/firn rheological law is from:
Gagliardini O. and J. Meyssonnier, 1997. Flow simulation of a firn covered cold glacier. Annals of Glaciol., 24, p. 242-248.

Its implementation within Elmer/Ice and an application are presented in this reference:
Zwinger T. , R. Greve, O. Gagliardini , T. Shiraiwa and M. Lyly, 2007. A full Stokes-flow thermo-mechanical model for firn and ice applied 
to the Gorshkov crater glacier, Kamchatka. Annals of Glaciol., 45, p. 29-37.

Applications:

Gilbert A., C. Vincent, O. Gagliardini, J. Krug and E. Berthier, 2015. Assessment of thermal change in cold avalanching glaciers in 
relation to climate warming, Geophys. Res. Lett., 42, doi:10.1002/2015GL064838.

Gilbert, A., O. Gagliardini, C. Vincent, and P. Wagnon, 2014. A 3-D thermal regime model suitable for cold accumulation zones of 
polythermal mountain glaciers, J. Geophys. Res. Earth Surf., 119, doi:10.1002/2014JF003199
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Porous solver in Elmer/Ice references

http://dx.doi.org/10.1002/2015GL064838
http://dx.doi.org/10.1002/2015GL064838
http://dx.doi.org/10.1002/2014JF003199
http://dx.doi.org/10.1002/2014JF003199
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Damage: related equations 

Stokes Equations

• Inputs

• Outputs

 Velocities and isotropic pressure
 Stresses, strain-rates

• Inputs

• Outputs :

 Free surface elevation • Inputs Velocities

 Velocities

• Outputs   Surface elevation

Fully coupled

• BC :

div� + ⇢g = 0

div ⇢u = 0
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Damage

 Density 
 Temperature
 Geometry 

Damage

+ Glen’s law for damaged ice
 :   Velocities, Deviatoric 
stresses
    

Damage at inflow boundaries

 Density fieldDamage
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Damage Solver
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This is a generic Advection-Reaction equation 
=> Use the Elmer AdvectionReaction Solver 

Solver 3
  Equation = Sij
  Procedure = "ElmerIceSolvers" "ComputeDevStress"
[...]
  Exported Variable 1 = Stress[Sxx:1 Syy:1 Szz:1 Sxy:1 Syz:1 Sxz:1]
  Exported Variable 1 DOFs = 6
!Additionnally, for output visualisation, the damage criterion Chi is saved as a variable named Chi, which !
need to be exported in a solver, such as :
  Exported Variable 2 = -dofs 1 "Chi"
[...]
End

Solver 8
  Equation = "AdvReact"
  Exec Solver = "After Timestep"
  Procedure = File "AdvectionReaction" "AdvectionReactionSolver"
  ! this is the DG variable, which is not part of the output
  Variable =  -nooutput "DGdamage"

  ! this tells that the solver is run on DG mesh
  Discontinuous Galerkin = Logical True
  ! the solver can account for upper and lower limits of the variable
  ! imposed by formulation of an variational inequality (VI)
  ! next line switches the VI to be accounted for
  Limit Solution = Logical True

  ! This is the variable that is used to interpolate
  ! the DG solution to the regular FEM mesh in order
  ! to get a correct output
  Exported Variable 1 = Damage
End

Body Force 1
  DGD Source = Variable Damage
    Real Procedure "ElmerIceUSF" "SourceDamage"
End

Material 1
 ..
 Glen Enhancement Factor = Variable Damage
    Real Procedure "ElmerIceUSF" "EnhancementFactor" 
    
  Damage Enhancement Factor = Real 2.00 ! damage enhancement factor
  Damage Parameter sigmath = Real 0.05 ! stress threshold for damage 
increase
End

Coupling with Stokes and Glen’s flow law: 
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Krug, J., G. Durand, O. Gagliardini and J. Weiss, 2015. Modelling the impact of submarine frontal melting and ice mélange on glacier 
dynamics, The Cryosphere, 9, 989-1003, doi:10.5194/tc-9-989-2015. 

Krug, J., J. Weiss, O. Gagliardini and G. Durand, 2014. Combining damage and fracture mechanics to model calving, The Cryosphere, 8, 
2101-2117, doi:10.5194/tc-8-2101-2014.
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Damage solver in Elmer/Ice references

http://dx.doi.org/10.5194/tc-9-989-2015
http://dx.doi.org/10.5194/tc-9-989-2015
http://dx.doi.org/10.5194/tc-8-2101-2014
http://dx.doi.org/10.5194/tc-8-2101-2014

