
Elmer
Software Development Practices

APIs for Solver and UDF

ElmerTeam
CSC – IT Center for Science

CSC, November.2015

Elmer programming languages

Fortran90 (and newer)

– ElmerSolver (~240,000 lines of which ~50% in DLLs)

C++

– ElmerGUI (~18,000 lines)

– ElmerSolver (~10,000 lines)

C

– ElmerPost (~45,000 lines)

– ElmerGrid (~30,000 lines)

– MATC (~11,000 lines)

Tools for Elmer development

Programming languages

– Fortran90 (and newer), C, C++

Compilation

– Compiler (e.g. gnu), configure, automake, make, (cmake)

Editing

– emacs, vi, notepad++,…

Code hosting (git)

– Current: https://github.com/ElmerCSC

– Obsolite: www.sf.net/projects/elmerfem

Consistency tests

Code documentation

– Doxygen

Theory documentation

– Latex

Community server

– www.elmerfem.org (forum, wiki, etc.)

Elmer libraries

ElmerSolver

– Required: Matc, HutIter, Lapack, Blas, Umfpack (GPL)

– Optional: Arpack, Mumps, Hypre, Pardiso, Trilinos,
SuperLU, Cholmod, NetCDF, HDF5, …

ElmerGUI

– Required: Qt, ElmerGrid, Netgen

– Optional: Tetgen, OpenCASCADE, VTK, QVT

Elmer licenses

ElmerSolver library is published under LGPL

– Enables linking with all license types

– It is possible to make a new solver even under proprietary
license

– Note: some optional libraries may constrain this freedom
due to use of GPL licences

Rest of Elmer is published under GPL

– Derived work must also be under same license (“copyleft”)

Elmer version control at GitHub

In 2015 the official version control of Elmer was
transferred from svn at sf.net to git hosted at GitHub

Git offers more flexibility over svn

– Distributed version control system

– Easier to maintain several development branches

– More options and hence also steeper learning curve

– Developed by Linus Torvalds to host Linux kernel
development

GitHub is a portal providing Git and some additional
services

– Management of user rights

– Controlling pull requests

Git- Version control system

Elmer uses git version control system for the code
repository and development

– Hosted at github

– Development version in ”trunk” is considered stable

– To obtain the whole source code

git clone https://github.com/ElmerCSC/elmerfem.git

– Git client available in command line in *nix systems

– In Windows systems a nice graphical client is “Tortoise”

Elmer at Github

https://github.com/ElmerCSC

https://github.com/ElmerCSC

Activity on Github

Elmer is published under (L)GPL

Used worldwide by thousands of researchers (?)

One of the most popular open source multiphysical
software

~20k Windows downloads at sf.net in a year

16k Windows downloads at sf.net in a year

Installers

Fresh Windows installers

– Currently only 64 bit version

– Also a parallel version with msmpi

– http://www.nic.funet.fi/pub/sci/physics/elmer/bin/windows/

Elmer for Debian & Ubuntu etc. at launchpad

– Nightly builds from Git repository

– To install
$ sudo apt-add-repository ppa:juhmat/elmer-test

$ sudo apt-get update

$ sudo apt-get install elmerfem-csc

http://www.nic.funet.fi/pub/sci/physics/elmer/bin/windows/

Cmake build system

During 2014-2015 Elmer was migrated from gnu
autotools to cmake

cmake offers several advantages

– Enables cross compilation for different platforms (e.g. Intel
MICs)

– More standardizes installation scripts

– Straight-forward package creation for many systems (using
cpack)

– Great testing utility with ctest

Transition to cmake required significant code changes

– ISO C-bindings & many changes in APIs

– Backward compatibility in compilation lost

Obtaining the source code

To clone the code (this is anonymously):
git clone \

https://github.com/ElmerCSC/elmerfem.git

– We work with branches. To change into another branch:

cd elmerfem

git checkout branchname

We use the following branches (confined to most
important):

– release: contains stable release (~half-yearly update)

– devel: our main branch from which you should get latest
updates

– elmerice: the main developer branch for Elmer/Ice

NB: you might have to do a

git checkout --track origin/elmerice

Obtaining the source code

On branches:

Code organization

fem Source of ElmerSolver

matc MATC language

fhutiter Fortran version of linear
algebra solvers

ElmerGUI Graphical User Interface to
Elmer based on QT4

elmerice Elmer/Ice solver and
function source code

post Legacy visualization tool

elmergrid Grid manipulation for Elmer

mathlibs Contains Lapack/BLAS from
netlib (avoid using them)

elmerparam Additional package for
optimization

Compilation of the whole code with cmake

To compile the whole code see example scripts under
www.csc.fi/elmer and www.elmerfem.org
ELMERSRC="/path/to/sourcecode/elmerfem"

BUILDDIR="/path/too/existing/and/empty/builddir"

IDIR="/path/to/installation/dir/”

TOOLCHAIN=“/path/to/optional/toolchainfile.smake"

cmake $ELMERSRC \

-DCMAKE_BUILD_TYPE=DEBUG\

-DCMAKE_INSTALL_PREFIX=$IDIR \

-DWITH_MPI:BOOL=TRUE \

-DWITH_Mumps:BOOL=TRUE \

-DWITH_Hypre:BOOL=TRUE \

-DWITH_ELMERGUI:BOOL=TRUE \

-DWITH_OCC:BOOL=TRUE \

-DWITH_PARAVIEW:BOOL=TRUE \

-DWITH_PYTHONQT:BOOL=TRUE \

-DWITH_QWT:BOOL=TRUE \

-DWITH_VTK:BOOL=TRUE \

-DWITH_PYTHONQT:BOOL=FALSE \

-DWITH_MATC:BOOL=TRUE \

-DWITH_ElmerIce:BOOL=TRUE

http://www.csc.fi/elmer
http://www.elmerfem.org/

Consistency tests

Simple shell script to run through the cases +
piece of C-code to compare the norm of solutions

There are >300 consistency tests (November 2015)

– Located under fem/tests, run with ctest in build-directory

Each time a significant commit is made the tests are run
with the fresh version

– Aim: trunk version is a stable version

– New tests for each major new feature

The consistency tests provide a good starting point for
taking some Solver into use

– cut-paste from sif file

Note: the consistency tests have often poor time and
space resolution for rapid execution

Consistency tests - example

Doxygen – WWW documentation

Doxygen – Example in code

Special comment indicators: !> and <!

!--

!> Subroutine for computing fluxes and gradients of scalar fields.

!> For example, one may compute the the heat flux as the negative gradient of temperature

!> field multiplied by the heat conductivity.

!> \ingroup Solvers

!--

SUBROUTINE FluxSolver(Model,Solver,dt,Transient)

!--

USE CoordinateSystems

USE DefUtils

IMPLICIT NONE

!--

TYPE(Solver_t) :: Solver !< Linear & nonlinear equation solver options

TYPE(Model_t) :: Model !< All model information (mesh, materials, BCs, etc...)

REAL(KIND=dp) :: dt !< Timestep size for time dependent simulations

LOGICAL :: Transient !< Steady state or transient simulation

!--

! Local variables

!--

TYPE(ValueList_t),POINTER :: SolverParams

Doxygen – Example in WWW

Compilation of a DLL module

Applies both to Solvers and User Defined Functions (UDF)

Assumes that there is a working compile environment
that provides ”elmerf90” script

– Comes with the Windows installer, and Linux packages

– Generated automatically when ElmerSolver is compiled

elmerf90 MySolver.f90 –o MySolver.so

User defined function API

!--

!> Standard API for UDF

!--

RECURSIVE FUNCTION MyProperty(Model, n, t) RESULT(f)

!--

USE DefUtils

IMPLICIT NONE

!--

TYPE(Model_t) :: Model !< Handle to all data

INTEGER :: n !< Current node

REAL(KIND=dp) :: t !< Parameter(s)

REAL(KIND=dp) :: f !< Parameter value at node

!--

Actual code …

Function API

User defined function (UDF) typically returns a real
valued property at a given point

It can be located in any section that is used to fetch these
values from a list

– Boundary Condition, Initial Condition, Material,…

MyProperty = Variable time

"MyModule" "MyProperty"

Solver API

!--

!> Standard API for Solver

!--

SUBROUTINE MySolver(Model,Solver,dt,Transient)

!--

USE DefUtils

IMPLICIT NONE

!--

TYPE(Solver_t) :: Solver !< Current solver

TYPE(Model_t) :: Model !< Handle to all data

REAL(KIND=dp) :: dt !< Timestep size

LOGICAL :: Transient !< Time-dependent or not

!--

Actual code …

Solver API

Solver is typically a FEM implementation of a physical
equation (PDE)

But it could also be an auxiliary solver that does
something completely different

Solver is usually called once for each coupled system
iteration

Solver 1

Equation = ”MySolver"

Procedure = ”MyModule" ”MySolver”

…

End

Elmer – High level abstractions

The quite good success of Elmer as a multi-physics code
may be addressed to certain design choices
– Solver is an abstract dynamically loaded object

– Parameter value is an abstract property fetched from a list

The abstractions mean that new solvers may be
implemented without much need to touch the main
library
– Minimizes need of central planning

– Several applications fields may live their life quite independently
(electromagnetics and glaciology)

MATC – a poor man’s Matlab adds to flexibility as
algebraic expressions may be evaluated on-the-fly

Solver as an abstract object

Solver is a dynamically loaded object (.dll or .so)
– May be developed and compiled separately

Solver utilizes heavily common library utilities
– Most common ones have interfaces in DefUtils

Any solver has a handle to all of the data

Typically a solver solves a weak form of a differential equation

Currently ~50 different Solvers,
roughly half presenting physical phenomena
– No upper limit to the number of Solvers

Solvers may be active in different domains,
and even meshes

The menu structure of each solver in ElmerGUI may be
defined by an .xml file

Properties as abstract objects

Properties are saved in a list structure by their name

Namespace of properties is not fixed, they may be introduced in the
command file
– E.g. ”MyProperty = Real 1.23” adds a property ”MyProperty” to

a list structure related to the solver block

In the code parameters are fetched from the list
– E.g. ”val = GetReal(Material,’MyProperty’,Found)”

retrieves the above value 1.23 from the list

A ”Real” property may be any of the following
– Constant value

– Linear or cubic dependence via table of values

– Expression given by MATC (MatLab/C-type command language)

– User defined functions with arbitrary dependencies

– Real vector or tensor

As a result solvers may be weakly coupled without any a priori
defined manner

There is a price to pay for the generic approach but usually it is less
than 10%

SOLVER.KEYWORDS file may be used to give the types for the
keywords in the command file

DefUtils

DefUtils module includes wrappers to the basic tasks
common to standard solvers

– E.g. ”DefaultDirichlet()” sets Dirichlet boundary
conditions to the given variable of the Solver

– E.g. ”DefaultSolve()” solves linear systems with all
available direct, iterative and multilevel solvers, both in
serial and parallel

Programming new Solvers and UDFs may usually be done
without knowledge of other modules

DefUtils – some functions

Example: Poisson equation

Implemented as an dynamically linked solver

– Available under tests/1dtests

Compilation by:
elmerf90 Poisson.f90 –o Poisson.so

Execution by:
ElmerSolver case.sif

The example is ready to go massively parallel and with all
a plethora of elementtypes in 1D, 2D and 3D

Poisson equation: code Poisson.f90
!--
!> Solve the Poisson equation -\nabla\cdot\nabla \phi = \rho
!--
SUBROUTINE PoissonSolver(Model,Solver,dt,TransientSimulation)
!--
USE DefUtils
IMPLICIT NONE
…

!Initialize the system and do the assembly:
!--
CALL DefaultInitialize()

active = GetNOFActive()
DO t=1,active

Element => GetActiveElement(t)
n = GetElementNOFNodes()

LOAD = 0.0d0
BodyForce => GetBodyForce()
IF (ASSOCIATED(BodyForce)) &

Load(1:n) = GetReal(BodyForce, 'Source', Found)

! Get element local matrix and rhs vector:
!--
CALL LocalMatrix(STIFF, FORCE, LOAD, Element, n)

! Update global matrix and rhs vector from local contribs
!---
CALL DefaultUpdateEquations(STIFF, FORCE)

END DO

CALL DefaultFinishAssembly()
CALL DefaultDirichletBCs()
Norm = DefaultSolve()

Body Force 1
Source = Variable Potential

Real Procedure "Source" "Source"
End

Boundary Condition 1
Target Boundaries(2) = 1 2
Potential = Real 0

End

Solver 1
Equation = "Poisson"
Variable = "Potential"
Variable DOFs = 1
Procedure = "Poisson" "PoissonSolver"
Linear System Solver = "Direct”
Linear System Direct Method = umfpack
Steady State Convergence Tolerance = 1e-09

End

Poisson equation: code Poisson.f90
CONTAINS

!--
SUBROUTINE LocalMatrix(STIFF, FORCE, LOAD, Element, n)

!--

…

CALL GetElementNodes(Nodes)
STIFF = 0.0d0
FORCE = 0.0d0

! Numerical integration:
!----------------------
IP = GaussPoints(Element)
DO t=1,IP % n

! Basis function values & derivatives at the integration point:
!--
stat = ElementInfo(Element, Nodes, IP % U(t), IP % V(t), &

IP % W(t), detJ, Basis, dBasisdx)

! The source term at the integration point:
!--
LoadAtIP = SUM(Basis(1:n) * LOAD(1:n))

! Finally, the elemental matrix & vector:
!--
STIFF(1:n,1:n) = STIFF(1:n,1:n) + IP % s(t) * DetJ * &

MATMUL(dBasisdx, TRANSPOSE(dBasisdx))
FORCE(1:n) = FORCE(1:n) + IP % s(t) * DetJ * LoadAtIP * Basis(1:n)

END DO
!--
END SUBROUTINE LocalMatrix

!--
END SUBROUTINE PoissonSolver
!--

Poisson equation: source term, examples

Constant source:

Source = 1.0

Source dependeing piecewise linear on x:

Source = Variable Coordinate 1

Real

0.0 0.0

1.0 3.0

2.0 4.0

End

Source depending on x and y:

Source = Variable Coordinate

Real MATC ”sin(2*pi*tx(0))*cos(2*pi(tx(1))”

Source depending on anything

Source = Variable Coordinate 1

Procedure ”Source” ”MySource”

Poisson equation: ElmerGUI menus
<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE edf>
<edf version="1.0" >

<PDE Name="Poisson" >
<Name>Poisson</Name>

<BodyForce>
<Parameter Widget="Label" > <Name> Properties </Name> </Parameter>

<Parameter Widget="Edit" >
<Name> Source </Name>
<Type> String </Type>
<Whatis> Give the source term. </Whatis>

</Parameter>
</BodyForce>

<Solver>
<Parameter Widget="Edit" >

<Name> Procedure </Name>
<DefaultValue> "Poisosn" "PoissonSolver" </DefaultValue>

</Parameter>
<Parameter Widget="Edit">

<Name> Variable </Name>
<DefaultValue> Potential</DefaultValue>

</Parameter>
</Solver>

<BoundaryCondition>
<Parameter Widget="Label" > <Name> Dirichlet conditions </Name> </Parameter>
<Parameter Widget="Edit">

<Name> Potential </Name>
<Whatis> Give potential value for this boundary. </Whatis>

</Parameter>
</BoundaryCondition>

</PDE>
</edf>

Development tools for ElmerSolver

Basic use

– Editor (emacs, vi, notepad++, jEdit,…)

– elmerf90 script

Advanced

– Editor

– git client

– Compiler suite (gfortran, ifort, pathf90, pgf90,…)

– Documentation tools (Doxygen, LaTeX)

– Debugger (gdb)

– Profiling tools

– …

Elmer – some best practices

Use version control when possible

– If the code is left to your own local disk, you might as well
not write it at all

– Never fork! (user base of 1000’s)

Always make a consistency test for a new feature

– Always be backward compatible

– If not, implement a warning in the code

Maximize the level of abstraction

– Essential for multi-physics software

– E.g. any number of physical equations,
any number of computational meshes,
any number of physical or numerical parameters – without
the need for recompilation

