Elmer/Ice News

Elmer/Ice @ EGU2018

egu plainDon't miss the 7 Elmer/Ice related posters and orals that will be presented during EGU 2018:

Monday, 9 Apr 2018
Johannes Fürst, Francisco Navarro, Fabien Gillet-Chaulet, Geir Moholdt, Xavier Fettweis, Charlotte Lang, Thorsten Seehaus, Matthias Braun, Douglas Benn, Toby Benham, Julian Dowdeswell, Mariusz Grabiec, Jack Kohler, Katrin Lindbäck, Rickard Pettersson, and Heïdi Sevestre. The ice-free topography of Svalbard, Mon, 09 Apr, 14:00–14:15, Room N1

Tuesday, 10 Apr 2018
Joe Todd, Jan Åström, Doug Benn, Thomas Zwinger, and Poul Christoffersen. 3D Calving Modelling of Store Glacier and Rink Isbrae using Elmer/Ice and HiDEM, Tue, 10 Apr, 17:30–19:00, Hall X4, X4.20

Wednesday, 11 Apr 2018
Lionel Favier, Nicolas Jourdain, Nacho Merino, Gael Durand, Olivier Gagliardini, and Fabien Gillet-Chaulet. Ice/Ocean coupled model based recommendations for sub-shelf melting parameterisations in standalone ice-sheet modelling, Wed, 11 Apr, 17:30–19:00, Hall X5, X5.377

Carlo Licciulli, Pascal Bohleber, Josef Lier, Olivier Gagliardini, Martin Hoelzle, Olaf Eisen, and Dietmar Wagenbach. Full Stokes ice-flow modeling of the high -Alpine glacier saddle Colle Gnifetti, Monte Rosa,Wed, 11 Apr, 17:30–19:00, Hall X5, X5.377

Clemens Schannwell, Reinhard Drews, Christoph Mayer, Olaf Eisen, Emma C. Smith, Todd A. Ehlers, Fabien Gillet-Chaulet, and Olivier Gagliardini. Fully-coupled 3D modelling of Hal, vfarryggen Ice Rise, Dronning Maud Land, East AntarcticaWed, 11 Apr, 09:00–09:15, Room L3

Thursday, 12 Apr 2018

Sainan Sun, Reinhard Drews, Frank Pattyn, Keith Nicholls, and Sophie Berger. Basal melt rate variability across ice-shelf channels in Dronning Maud Land, Antarctica, Thu, 12 Apr, 10:44–10:46, PICO spot 4

Friday, 13 Apr 2018

Sophie Berger, Reinhard Drews, Veit Helm, Niklas Neckel, Sainan Sun, Frank Pattyn, and Olaf Eisen. Detecting high spatial variability of ice-shelf basal mass balance, Fri, 13 Apr, 11:30–11:45, Room N1

  • Created on .
  • Last updated on .
  • Hits: 1874

Determining dynamics of calving at Kronebreen

KronebreenUndercuttingWith Elmer/Ice among a multitude of models, including surface energy balance and runoff, a simple basal hydrological model as well as a plume and a discrete element model, the authors investigate the influence of undercutting caused by plumes fed by runoff entering the glacier and released at certain outlets by basal hydrological flowpaths as well as sliding on calving rates at Kronebreen, Svalbard. The authors are able to show the influence of undercutting as well as basal sliding on calving rates of this fast flowing tidewater. Sliding coefficients have been obtained from a temporal and spatial high resolution satellite data-set. Those obtained friction coefficients - as well as the geometry obtained from the undercut model and Elmer/Ice are used in the discrete element model HIDEM to simulate the calving behaviour, which then are compared to measured front positions.

Read more: Vallot, D., J. Åström, T. Zwinger, R. Pettersson, A. Everett, D.I. Benn, A. Luckman, W.J.J. van Pelt, F. Nick, and J. Kohler, 2018. Effects of undercutting and sliding on calving: a global approach applied to Kronebreen, Svalbard. The Cryosphere, 12, 609-625, doi:10.5194/tc-12-609-2018

  • Created on .
  • Last updated on .
  • Hits: 1556

3D calving applied to Store Glacier, Greenland

Store Determining calving in continuum models - such as Elmer/Ice - is a challenge. In this latest paper, the authors present a full  3D calving model developed in Elmer/Ice, based on the crevasse depth criterion, which states that calving occurs when surface and basal crevasses penetrate the full thickness of the glacier. Alongside, a new 3D rediscretization approach and a time-evolution scheme which allow the calving front to evolve realistically through time have been implemented. The model is applied to the Store Glacier, one of the largest outlet glaciers in West Greenland. Results reveal that the new model realistically simulates the seasonal advance and retreat when two principal environmental forcings, namely  submarine melting and  ice mélange buttressing, are applied. The sudy clearly links ice mélange buttressing  to Store Glacier's seasonal advance and retreat. Distributed submarine melting prevents the glacier from forming a permanent floating tongue, while concentrated plume melting has a disproportionately large and potentially destabilizing effect on the calving front position. Results further highlight the importance of basal topography, which exerts a strong control on calving. This explains why Store Glacier has remained stable during a period when neighboring glaciers have undergone prolonged interannual retreat.

Read more: Todd, J., P. Christoffersen, T. Zwinger, P. Råback, N. Chauché, D. Benn, A. Luckman, J. Ryan, N. Toberg, D. Slater, and A. Hubbard, 2018. A Full-Stokes 3D Calving Model applied to a large Greenlandic Glacier. Journal of Geophysical Research: Earth Surface. doi:10.1002/2017JF004349

  • Created on .
  • Last updated on .
  • Hits: 1523

Elmer/Ice project © 2020 -- Conception : iGrafic